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FITLOS: A FORTRAN  PROGRAM FOR FITTING LOW-ORDER POLYNOMIAL 

SPLINES B Y  THE METHOD OF LEAST SQUARES 

by Pat r ic ia  J. S m i t h  

Lewis  Research  Center 

SUMMARY 

FITLOS is a FORTRAN N program  to fit polynomial  splines of degrees two and 
three.  It  combines  some of the  advantages of the  method of least   squares  with  the  seg- 
mented  curve of the  theory of splines.  FITLOS  divides a s e t  of data  points  into  subsets 
and fits a polynomial of degree two or  three on  each  subset  by  the  method of least 
squares.  The  total  curve is made  smooth  by  making  the  polynomials on adjacent  sub- 
sets  and  their  first derivatives  equal  at  the  break  point  between  the  segments of the 
curve.  For  third-degree  polynomials,  the  second  derivatives  are  also  made  equal. 
These  constraints are imposed  by  the  method of Lagrangian  multipliers. 

FITLOS  was  written  to  complement  other  types of curve-fitting  programs.  This 
report  describes  the  mathematical  analysis of the  least  squares  polynomial  spline fit, 
gives  complete  documentation of the  program  FITLOS,  and is intended  to  serve as a 
user's  guide  for  FITLOS.  To  augment  this  last  purpose,  the  report  includes  examples 
of problems  for which  this  type of curve-fit is useful. 

INTRODUCTION 

FITLOS  was  written  to  complement  other  curve-fitting  programs. A new  method 
of curve-fitting  was  needed that would  combine  some of the  advantages of a least   squares  
polynomial  with  the  segmented  curve of the  theory of splines.  Segmenting  the  curve 
gives it more  freedom  than a single  polynomial  over  the  entire  range of the  data,  while 
fitting  by  the  method of least  squares  smooths  any  small  fluctuations  in  the  data. 

The  name  "spline" is derived  from  the  draftsman's  spline  which is used  to fair 
curves.  Like  the  draftsman's  spline,  the  spline  function is smooth. DeBoor's defini- 
tion of a spline  function is used  for  this report (ref. 1). It is as follows: A function 
f(x) is a spline  function of degree M with  joints x1 < x2 < - * < xn if it has  these two 
properties: 



(1) In  each of the  intervals (-m, xl), [x1, x2), . . . , [xn, m), f(x) is a polynomial 
of degree M. 

(2) The first M - 1 derivatives are continuous. 
In  FITLOS,  the  continuity of the  curve  and its derivatives is imposed  by  the  method of 
Lagrangian  multipliers  (ref.  2). 

The  use of low-degree  polynomials  has two advantages. First, they  have  relatively 
few  local  maxima  and  minima.  Second,  they are easily  differentiated  and  integrated. 
Second-degree  polynomials  have a third  advantage;  namely,  their  roots are easily 
found.  Consequently, a FITLOS  curve fit can be used  readily  for  further  applications. 

This   report  is intended  to  serve  three  purposes.  First, it describes  the  details 
of the  mathematical  analysis of the least squares  polynomial  spline fit. Second, it p re -  
sents  the  program  FITLOS,  which  makes  this  type of curve fit, and  gives  instructions 
for  using  the  program.  Third, it presents two  problems  for  which  the least squares 
polynomial  spline fit is applicable  and  compares  the  results  with fits made by other 
methods. 

Notation  in  the  section MATHEMATICAL DERIVATION follows  convefitions  in  stand- 
ard  mathematics  textbooks.  Involved  proofs  and  mathematical  details are given  in  the 
appendixes . 

To  clarify  the  vocabulary,  the  word  "order" refers to  the  sequence of points or  
numbers,  while  the  word  "degree" refers to  the  highest  power of x in  the  polynomials, 
For  example,  the  values x1 < x2 < xNx are in  order,  while  FITLOS  fits  polynomials 
of degree two o r  three.  The  difference  between  "subsetsfT  and  "segments" is a little 
more  subtle.  The set of data  points is divided  into  subsets,  while  the  fitted  curve is 
divided  into  segments.  However,  the  subsets of data  correspond  to  the  segments of 
the  curve. 

MATHEMATICAL  DERIVATION 

C u r v e  Fit 

Consider a s e t  of NX data  points Z = (xi, yi) I i = 1, 2, . . . , NX where I 
xi <  xi+^ 
be  defined: 

. F o r  a weighted  least  squares  polynomial fit of degree M, a matrix X can 
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Let W be the  matrix of weights  which  has  only  diagonal  elements, 

W = diag  (wlJ  w2, . . . , wm) 

Let  Y  be  the  column  vector 

where  the  y's  have  the  same  order as the x's in  the  matrix X .  Let A be  the  column 
vector of undetermined  coefficients.  Then let Y* be  the  column  vector  such  that 
Y = XA. F o r  a weighted  least  squares fit, the  scalar 

* 

E = (Y - Y)T W(Y* - y) 
* 

must  be  minimized  with  respect to each  element of A. 
The  weighted  least  squares  polynomial  spline fit can  be  described  in a similar  man- 

ner.  First, however, a se t  of spline  joints XM must  be  defined.  Let XM be  the 
set of x-values of the  break  points  between  the NS segments of the  curve 
XM = [(xm)n 1 n = 1, 2, . . . NS - 1 }. Now se t  2 can  be  divided  into NS subsets 
such  that 



F o r  convenience, two sets of data  point  indices  can be defined.  Let F be the set of 
indices of the first data point  in  each  subset F = { Fn},   where Fn is the  smallest i 
such  that (xi, yi) is an  element of Zn.  Similarly, let L be the set of indices of the last 
data  point  in  each  subset  L = { Ln},  where LN is the  largest i such  that (xi, yi) is 
an  element of Zn. From  these  definitions it can be seen  that if any of the  (xm)n is a n  
x-value of a data  point,  that  data  point is the last point  in  the nth subset  and  the first 
point  in  the  (n + l)th subset.  However,  the  (xm)  do  not  have  to  correspond  to data points. 

When the  data  have  been  divided  into  subsets, a matrix  X  can  be  defined  which is 
composed of submatrices  Xij  such  that 

x.. = 
1J 

1 X 
Fi 

X 
M 
Fi 

f o r  j = i, and  X.. is null  for j # i. Matrix  X  has NS nonzero  rectangular  block  sub- 
matr ices  on its  diagonal  and  null  submatrices  elsewhere.  The  notation  can  be  simplified 
a little at this  point  by  dropping  the  second  subscript  on  the  submatrices of X  since 
only  diagonal  elements are present. 

13 

X = diag  (Xl, X2, . . . XNs) 

Similarly, let Y be  a column  vector  which is composed of  NS subvectors Yi  of the 
form 

Vector  Y  has  the  form 

Y = col  (Yl,  Y2, . . . , YNS) 
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Let W be the  matrix of weights  which is composed of square  submatrices W.. of the 
form 

11 

W.. 1J = diag (wF , 
i WFi+lJ * * 3 w ~ i )  

fo r  j = i, and W.. is null fo r  j # i. Again  dropping  the  second  subscript, W has the 
form 

11 

W = diag (Wl, W2, . . . , WNs) 

Let A be a column  vector of undetermined  coefficients  composed of NS subvectors of 
the  form 

Vector A has  the  form 

A = C O ~  (A1, A2, . . . , AN& 

Let  Y  be  the  column  vector  defined by  the  matrix  product 
* 

Y = X A  
* 

The  scaler 

E = (Y - Y)T W(Y* - Y> 
* 

must be minimized  with  respect to  each  element of A, but  subject  to  the  constraints 
that  the  first  M - 1 derivatives of  Y* must  be  continuous at the  break  points  between 
the  segments of the curve.  These  constraints  can  be  expressed  in  matrix  form  by de- 
fining  the  matrix C which is composed of submatrices 



, 1 1 1 1  I 1  I I III,,, I I, I 111.m.. . . . 

f o r  a quadratic fit, and 

c.. = 
1J 0 1 2 ( ~ m ) ~   3 ( ~ m ) ~  2 

for  a cubic fit f o r  j = i. For j = i + 1, C i, j - l .  For other  combinations of i 
and j, C.. is null.  Again  dropping  the  second  subscript, C has  the  form 

i j  = 

11 

C =  

c1 -c 1 0- 

L 
0 

I 
c2 -c 0 

‘NS-1  -‘NS-: 

The  constraints  take the form 

C A =  0 

The  set  of Langrangian  multipliers  can  be  introduced as a row vector A composed of 
NS - 1 subvectors Ai of the  form 

A. 1 = (A il, Ai27 9 AiM) 

Vector A has  the  form 

The scalar E then  becomes 

* 
E = (Y - Y)T’W(Y* - Y) + ACA 

6 



and  must  be  minimized  with  respect  to  each  element of A 
Substituting for Y" 

E = (XA - Y)T W(XA - Y) + ACA 

To minimize E with respect  to a.., the  derivative of E with respect  to a.. is set to 
zero;  that is, 

1.l 1.l 

o = - -  a' -~ a(XA - y)T W(XA - Y) + (XA - Y)  W a(xA ~~ - y> + A c  __ aA 
1.l 

aai aaij  aa.. aa.. 
1J 

Since 

W = WT, and a scalar is equal  to i t s  own transpose,  we  have 

a(XA - Y)T W(XA - Y) = (XA - Y) vir a(XA - y, = (XA - y) WX - 

1J 

T aA 
aa.. 

"" 

aaij aa.. 
1J 

Therefore, 

2(XA - Y)TWX + AC 

2(XA - Y)TWX + AC = 2A T T  (X  WX) - 2(YTWX) + AC = 0 (3) 

Since  the  matrix X T WX has  an  inverse,  right  multiplying by (X T WX)-l,  dividing  by  the 
scalar  2, and  separating  the  unknowns AT and A gives 

AT + 1 AC (XTWX)-l = (YTWX)(XTWX)-l 
2 

(4) 

7 



The proof that X WX has  an  inverse  is given  in  appendix A. T 

Since  CA = 0, (CA) = ATCT = 0. Right  multiplying  equation (4) by C gives T T 

1 AC(XTWX) -1 C T = (YTWX)(XTWX)-lCT 
2 

Since  the  matrix C(XTWX)-lCT has  an  inverse,  right  multiplying  by [C(XTWX)  C -1 TI -' 
gives L J 

The proof that  C(X  WX)-lCT  has  an  inverse is also  given  in  appendix A. 
Substituting  for  1/2 A in  equation (4) and  solving  for AT gives 

T 

AT = (YTWX) I - (XTWX)-lCT [C(XTWX)-lCT]-lC) (XWX)-l 

-1 T -1 
The  details of this  matrix  manipulation  and a method of finding  rc(xTWX) C 1 is 
given  in  appendix B. L -I 

Stat ist ical   Analysis 

FITLOS  makes a rudimentary statistical analysis of the  curve-fit.  It  calculates  the 
deviation  and  relative  error  between  the  given  data  and  the  fitted  curve,  the  variance 
and  the  standard  deviation,  and  Pearson's  correlation  coefficient.  The  formulas  were 
taken  from  reference 3, but  they are  standard  in  any  statistics  textbook.  The  formulas 
are as follows: 

Deviation: 

Relative  error:  

8 



Variance: 

where 

Nx >: (di - a)2 
cT2 = i= 1 

F 

Nx 

- 1=1 d =  
c di 

Nx 

and 

F = Number of degrees of freedom 

= Number of points - Number of constraints 

= NX - M(NS - 1) 

Standard  deviation: 

Correlation  coefficient: 



Since  the  number of constraints is large,  and  hence,  the  number of degrees of free- 
dom is small, the  correlation  coefficient  can be deceptively  small.  For  this  reason, 
FITLOS  also  calculates  the  maximum possible correlation  coefficient,  which is r for 
y? = yi fo r  all i. The  maximum r is equal  to F/NX. 
1 

GENERAL DESCRIPTION OF PROGRAM 

FITLOS  was  written  in FORTRAN IV for  the  computer  at   the  Lewis  Research  Center,  
which is a n  Il3M 7094  II/7044 o r  7040 Direct  Couple  computer  under BSYS version  13 
using  ALTIO. 

Computer  storage  for  the  program as it is presented  here,  with 350 data  points  and 
10 spline  joints, is around 20 000 locations.  Since  the  Lewis  computer  has  32 000 loca- 
tions,  the  program  could  be  expanded  to  fit  more  data  points o r  to fit the  curve  in  more 
segments. 

The  program is written as a series of subroutines so the  actual  curve-fitting  routine 
could be used as pa r t  of another  program.  The  actual fit requires  only three  subroutines: 
one  to  divide  the  data  into  subsets,  one  to  define  the  matrices  in  equation (5), and  one  to 
solve  equation (5). 

In order  to  make  the  subroutines as flexible as possible,  their  arrays  have  variable 
dimensions.  To  conserve  execution  time,  every  subprogram  with  variably  dimensioned 
a r r a y s  is called  only  once  by its subroutine  name.  These  calling  vectors  contain  only 
the  array  names  and  the  dimensions of the  corresponding  arrays  in  the  main  program 
FITLOS.  Afterwards,  the  subroutines are called  by  entry  names  which  do  not  disturb  the 
size of the  variably  dimensioned  arrays  set  up by the first call  by  the  subroutine  names. 

The  main  program  FITLOS  reads  input  data, calls the  subroutines  to  make  the fit 
(see tree diagram  for  hierarchy of subroutines,  fig. l), makes a statistical  analysis of 
the  fitted  curve,  and  writes  the  output  data. 

ORD, SEG, DEF, SLV, RFT, TRN, DXM, 
Calls to set dimensions in subroutines 

DSPL, DH, Dl, and DNS 

I" I 

Figure 1. - Tree diagram of subroutine  calls. 
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FITLOS  uses  the  following  procedure  to fit a curve: It reads  input  data,  which are 
described in  the  section  INPUT DATA. After  the data are read,  FITLOS  checks  logical 
variables TRANX and TRANY. If either is . TRUE. , subroutine TRANSF is called  to 
make a log  transformation  on x or  y. 

The  next  subroutine  called is ORDER,  which arranges  the  data  points  in  order of 
ascending x. The  next  subroutine called is SEGMNT, which  divides  the  data  into  sub- 
sets. SEGMNT is a monitoring  routine  which  controls calls to  small   subroutines 
(DTVXM, DIVNS, FFLOW,  FFHIGH,  and  SPESHL)  which  actually  allot  the  data  to  subsets. 
There are four  methods of dividing  the  data  into  subsets.  These are described  in  the 
section HOW DATA ARE DIVIDED INTO SUBSETS. 

fine  the  matrices  (XTWX)-l, YTWX, and C .  Then  subroutine ASOLVE is called  to 
perform  the  matrix  manipulation  involved  in  solving  equation (5). 

When  the  data  have  been  divided  into  subsets,  subroutine  DEFMAT is called to de- 

FITLOS  can  check  whether  the  curve  was  fit  in  more  segments  than  were  necessary. 
If the  logical  variable  LREFIT is . TRUE. , subroutine  REFIT is called  to  do  this  check- 
ing. When the refit checking is complete,  FITLOS  again  interrogates  logical  variables 
TRANX and  TRANY. If either is . TRUE.,  subroutine BTRANS is called  to  transform 
the  data  back to its original  form.  Then  the  statistical  analysis is made  and  the  output 
data  are  written  with  descriptive  labels  and  headings. 

If REFIT  has  indicated  there  were  too  many  segments  in  the  first  fit,  new spline 
joints  are  determined,  subroutines  DEFMAT  and ASOLVE are called  again, a new s ta t i s -  
tical  analysis is made,  and  the new output  data are printed. 

A  listing of each  subroutine,  along  with a flow  chart  and a description of i ts   opera- 
tion, is provided  in  appendix  E.  Variable  names  and  their  limitations  or  special fea- 
tu re s   a r e  found  in  the,  program  listings.  More  details of how FITLOS  works  can  be 
found in  the  section  INPUT  DATA. 

HOW DATA ARE DIVIDED INTO SUBSETS 

FITLOS  provides  four  methods of dividing  the  data  into  subsets.  The  user  deter- 
mines  which  method is used  by  proper  setting of the  input  variables. 

The  user  has  the  option of selecting  the  spline  joints, of selecting  the  number of 
segments, o r  of choosing  one of the  methods  the  program  does  automatically. 

If the  user  selects  the  spline  joints,  he  must  supply  these  data as part of the  input. 
Then  subroutine DIVXM searches  the  x-array  to  determine  the  index of the first and 
last point  in  each  subset. 

If the  user  chooses  the  number of segments,  subroutine DIVNS is called  to  divide  the 
data as evenly as possible  among  the  subsets. If the  user  does  not  specify  the  number 
of segments,  the  program  will  automatically  choose  the  largest  possible  number of seg-  
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ments  based on the  number of data  points  and  the  degree of the  polynomials.  Again,  sub- 
routine DIVNS is used  to  divide  the  data  into  subsets. 

If the  user  does  not  specify  either  the  spline  joints or the  number of segments, 
subroutine SEGMNT checks  the  number of data  points. If t h e r e   a r e  less than 3M + 1 
points,  subroutine  SPESHL is called  to  make a special  division of the  data  into  subsets. 
Fo r  M = 2, the  division is as follows: 

Index of Index of Number of Spline  joints 
first points last points  subsets 

1 3 o r  4 1 x or x 3 4 

1Y3  3Y5 2 x3’ x5 

1Y3 476 2 
x3 + x4 

2 x6 

For M = 3,  SPESHL divides the data as follows: 

Index of Index of Number of Spline  joints 
first  points  last  points  subsets 

1 4, 5, or 6 1 x4>x5Y Or x6 

1Y4 

1, 5 

477 

5Y9 

2 

2 

2 

x47 

x4 + x5 
2 , 

x5’ x9 

The  final  method of dividing  the  data  into  subsets is by  force-fitting.  The first 
M + 1 data  points a r e  used  to  determine a Lagrange  interpolation  polynomial. If the 
next  point,  the (M + 2)th point, falls on the  polynomial, it is accepted  in  the first sub- 
set.  Then  the  next  point is examined,  and so on  to  the  end of the  set of data  points. If 
a point does not fall on the  polynomial, a new subset is started with  the  next  M + 1 
points.   There  are two subroutines  to  do a force-fit  division of the  data.  FFLOW starts 
at the low end of the  data  set  and FFHIGH starts at the high end. 

12 



IN PUT DATA 

Input to  FITLOS is by  punched cards.   The  order of these  cards,  their  formats,  the 
variables  they  contain,  and  the  use of these  variables  in  controlling how the  curve is f i t  
are as follows: 

Card   Format  of card  Variable 

1 (12A6) TITLE 

M 

Nx 
NS 

2 (513,4L3,F12. 6) 

NB 

N F  

Description 

Alphanumeric  identification of the 
data.  The title must  be  confined  to 
columns 1 to 72 of one  card. 

Degree of the  polynomial. M must 
be 2 or  3.  

Number of (x, y, w) data  points. 

Number of segments if the  user 
selects the number of segments. 
NS # 0 means  the  curve will  be  fit 
in NS segments. If NS = 0, the  pro- 
gram will select  the  largest  possible 
number of segments. 

Number of spline  joints. NB # 0 
indicates  the  user has  selected  the 
spline  joints  and  these  data will be 
read as par t  of the  input  data. 
NB = 0 means  the  program will  s e t  
NB = NS - 1. 

Numerical  variable which indicates 
whether  force-fitting is used to di- 
vide  the  data  into  subsets. If N\F (0, 
the  data a r e  divided  into  subsets by 
force-fitting  starting at the low end 
of the  data. If N F  > 0, the  data  are 
divided  by  force-fitting  starting at 
the  high  end of the  data. If N F  = 0, 
the  program  divides  the  data as 
evenly as possible  among  the  maxi- 
mum  possible  number of subsets. 
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Format  of card  Variable  Description Card 

2 (513,4L3 ,F 12.6) LREFIT  Logical variable which  indicates if 
FITLOS  should  check  whether  the 
curve  was fit in  more  segments  than 
were  necessary.  LREFIT = . TRUE. 
means a check  should  be  made. 
LREFIT = . FALSE.  means no check 
should be  made.  The  write-up of 
subroutine  REFIT  gives  details of 
how the  check is made. 

TRANX Logical  variable  which  indicates if a 
log  transformation  should  be  made 
on x and  (xm). TRANX = . TRUE. 
means  the  transformation  should  be 
made. TRANX = . FALSE. means 
the  transformation  should  not  be 
made. 

TRANY Logical  variable which indicates if a 
log  transformation  should  be  made on 
y and y*. TRANY = . TRUE. means 
the  transformation  should  be  made. 
TRANY = . FALSE.  means  the  trans - 
formation  should not be  made. 

NPUNCH Logical  variable which indicates if 
cards  containing  the  coefficients 
should  be  punched. NPUNCH = 

. TRUE. means no cards  should  be 
punched. NPUNCH = . FALSE. 
means  cards should be punched  with 
all the  coefficients  for one segment 
on a card. 

TOL  Tolerance  acceptable  for  refit 
checking o r  for  force-fitting.  De- 
tails of how TOL is used a r e  found 
in  the  descriptions of subroutine 
FFLOW. 
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Card Format  of card  Variable  Description 

3 

4 t o 3 + n ( n =  
number of data 
cards) 

(12A6) FMT  Variable  format for reading  (x,  y,  w) 
data  points. 

X Independent  variable  array. 
Y Dependent  variable array. 
W Array of weights.  Since  FITLOS 

makes a weighted  least  squares fi t ,  
each  point  must  have a weight. How 
ever, if all the  weights  are  zero, 
FITLOS  will  make all the  weights 1. 

The  (x,  y,w)  data are read  in  the  order (x1, yl,  wl), (x2, y2, w2), . . . , (xNx, ym, 
wm). If NB # 0, the  following  data a r e  needed: 

4 + n  ( 12A6) FMTM  Variable  format  for  reading  the  spline 
joints  selected  by  the  user. 

5+n to 3+n+m (FMTM) XM Array of spline  joints. If NB = 0, 
(m = number of FMTM  and XM a r e  not needed. 
spline  joint 
cards) 

4 + n + m  (13) KASES The  number of additional fits to  be 
made  with  the  current (x, y, w) data. 
KASES is originally  set  to  zero by 
FITLOS so a title card  and (x, y, w) 
data a re   read   in .  If the KASES card 
contains  zero or  is blank,  FITLOS 
wil l  transfer  to  read a new title  card 
and new (x,  y, w) data. If KASES # 0, 
FITLOS  will  transfer  to  read a new 
card 2. KASES is reduced  by 1 each 
time a new card  2 is read  in  until 
KASES finally becomes 0. 

Variables NS and NB a r e  not  independent.  FITLOS  interrogates NB to  determine if 
more  input  cards  should  be  read.  Subroutine SEGMNT interrogates NB first. If 
NB # 0, NS is set  equal  to NB + 1, and  the  division  into  subsets is based on NB and  the 
chosen  spline  joints. If NB = 0, SEGMNT interrogates NS. If NS # 0, NB is set  equal 
to NS - 1,  and  the  division  into  subsets is based on NS. If both NB and NS are   zero,  
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SEGMNT sets NS equal  to  the  maximum  possible  number of subsets  and  then  interrogates 
NF. More  specific  details of how these  input  variables  are  used  can  be  found  in  the  de- 
scriptions of the  individual  subroutines. 

TYPICAL  APPLICATIONS 

One  typical  application  for  FITLOS is fitting  experimental  data. An example of 
this is the  calibration of a multiplier  phototube-capacitor,  where  the  independent  varia- 
ble is time  and  the  dependent  variable is digitizer  counts.  Data  from  several  different 
light  sources are translated  until  the  curves  coincide as nearly as possible.  Since  the 
curves do  not  coincide  exactly,  there are  small  fluctuations  in  the  data.  For  such a 
calibration  to  be  useful,  these  fluctuations  must  be  eliminated. 

Obviously,  any  least  squares fit would  do that.  However,  fitting  this  curve  with a 
single  least  squares  polynomial of degree  one, two, or three  did  not  give  satisfactory 
results.   Figures 2 to 4 (appendix F) show  the  relatively  large  deviations  between  the data 
points  and  the  fitted  curve.  The  curve was then fit using  FITLOS  with  three  polynomials 
of degree two. The  deviations  between  the  data  points  and  the  fitted  curve a r e  sufficiently 
small ,  as figure 5 shows. 

The  curves  in  figures 2 to 5 (appendix F) a r e  plotted on a log-log  scale  to  emphasize 
these  deviations.  The  plots of the  deviations are made  on a semi-log  scale  because  they 
a r e  both  positive  and  negative.  The  computer listings from which these  plots  were  made 
and  the  computer  input  sheet  for  the  FITLOS fit can  be found  in  appendix F. 

Another  application  for  FITLOS is approximating a curve  to  obtain  further  informa- 
tion  about it, such as the  derivative  and  the  definite  integral.  The  source of the  data 
points is immaterial.  They  could  be  experimental  data  points o r  they  could  be  generated 
from  some  complicated  function.  The  points  for  this  example  were  generated  from  the 
function 

f(x) = x sin x - 1 

This  function was chosen  for  the  example  because it is not a polynomial  and  yet it is 
simple enough to  be  differentiated  and  integrated  analytically  for  comparison  with  the 
resul ts   f rom FITLOS.  The  derivative of f(x) is 

f'(x) = x  cos x + sin  x 

and  the  definite  integral is 
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J xf f(x)dx = (sin x - x cos x - x) Jxr 
xO xO 

F o r  finding  the  derivative  and  the  definite  integral  using a FITLOS  curve,  the  third- 
degree  polynomials  yield  smoother  curves.  The  derivative is 

y*' = a + 2a x + 3a4x 2 3 
2 

The  integral is a little  more  complicated  because  each  segment of the  curve  must  be  in- 
tegrated  separately.  Consequently,  the  definite  integral  takes  the  form 

# 

where i is the  number of the first spline  joint  such  that  (xm)i-l <xo  < (xm)i,  and N 
is the  number of additional  segments  such  that i + N 5 NS and (xm)i+N < xf. Tables I 

to  III(appendix G) compare  the  FITLOS  curve y* with  f(X), y*' with  f'(x),  and 6' Y* dx 

w i t h I x f  f(x) dx. Figures  6 to 8 (appendix G) are   plots  of the  data  in  these  three  tables. 
0 

X 
0 

To  determine  the  roots of this  curve,  the  curve  should  be  fitted  with  second-degree 
polynomials.  The  roots of y* can  be  found  by  the  quadratic  formula.  The  roots of 
f(x) can  be found numerically (by  the  Newton-Raphson  method) for  comparison.  The 
following  table  compares  the  Newton-Raphson  roots  with  the  FITLOS  roots: 

i Newton-Raphson  root 

1. 1141571 

2.7726047 

. .. 

.. 

The  computer  listings  and  the  input  sheet  for  FITLOS  for  this  example are pre-  
sented  in  appendix G. 
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Another  application  for  FITLOS,  one  that is shared by all curve  -fitting  schemes, is 
generating  points  for  mechanical  plotting.  Automatic  plotting  devices  such as the 
Calcomp  Plotter or the DD80 Microfilm  Plotter  require a method of generating  points 
close  together.  Figures 2 to 5 illustrate  this  application,  since  these  plots  were  done 
on  the  Calcomp  Plotter at the  Lewis  Research  Center.  Figures 6 to 8 were  done  on  the 
DD80 Microfilm  Plotter. 

CONCLUDING REMARKS 

This  report  has  described  the  mathematical  analysis of the  least squares polynomial 
spline  method of curve  fitting;  has  presented  the  FORTRAN  program  FITLOS,  which 
makes  this  type of curve fit; and is intended  to  serve as a user's  guide  for  FITLOS.  The 
sample  problems  included show problems  for which  this  type of curve fit is useful. 
They  also show how the  curve fit may  be  used  for  further  applications  such as integration, 
differentiation,  root  finding,  and  plotting. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland,  Ohio,  March 23, 1971, 
129-04. 
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APPENDIX A 

PROOF THAT MATRICES XTWX  AND C(XTWX) C  HAVE  INVERSES -1 T 

Matrix XTWX 

Let  X  and W be  the  matrices  in the main-text  section  Curve Fit. Since X is 
block  diagonal  and W is diagonal,  the  product  matrix  X WX is block  diagonal  with T 

diagonal  blocks of the  form 

(X T WX)i = x: w:x, T 
1 I 1  

k= F i 

WkXk 
M 

k=Fi 
- 

WkXk.  
k=Fi 

I 

Li x WkXk 
2M 

k= F i I 
-1 

Therefore, (X"'WX)-', if it exists, is block  diagonal  with  diagonal  blocks (Xi WiXi)-l. T 

Let U be  the  diagonal  matrix 

Then (X WX)i becomes (X WX)i = Xi U UXi. If P is defined as P = UXi, then T  T T T  

(XTWX)i = PTP.  
Since  the  leading  principal  minor of Xi is Vandermonde of order  M + 1 and  since 

none of the Xi are equal,  by  the  definition of the  spline  function, Xi has  rank M + 1. 
Since  premultiplying Xi by  the  nonsingular  matrix U does  not  change  the  rank,  the 
product P has  rank M + 1, by  theorem 5.6.3 of reference 4. The  matrix 
(X WX)i = P P then  has  rank M + 1, by  theorem 5.5.4 of reference 4. Therefore, 
since (XTWX)i has  dimension (M + 1) x (M + 1) and  has  rank M + 1, it is nonsingular. 
Consequently,  the  inverse (XWX)f' exists. 

T  T 
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Since (X T WX)i is defined f o r  all i, all the  submatrices (X WX)il exist and,  hence, T 

the  entire  inverse (X ~ ~ 1 - l  exists. T 

Matrix C(XTWX) -1 C T 

Let (XTWX)-l be the  inverse  matrix  found  in  the  preceding  section.  Let  C be 
the  matrix of constraints  defined  in  the  main-text  section  Curve Fit. Since Ci has 
rank  M  and  since  there are NS - 1 rows of blocks  in  C,  the  rank of C is (M)(NS - 1). 

It was shown  that  X WX is positive  definite  since it can  be  decomposed  into  the T 

form 

(XTWX) = PTP 

Consequently, its inverse (X WX)-l is also  positive  definite.  Therefore,  (XTWX)-l 
possesses a positive  definite  square  root  Q  (see pp. 92  to  93 of ref. 5),  and (X WX)-l 
can  be  written as 

T 
T 

where  Q  has  the  same rank as (X WX)-l, which is (M + l)(NS).  Therefore,  the  matrix 
C(XTWX) -lCT  can  be  written as 

T 

C(XTWX) C = CQQ C -1 T T T  

o r  as 

C(XTWX) -1 c T = PPT 

where P = CQ. Since  postmultiplying  C  by  the  nonsingular  matrix Q leaves  the  rank 
of the  product  unchanged, P has  the  same  rank as C,  which is (M)(NS - l), by  theorem 
5 .6 .3  of reference 4. The  matrix  C(X WX) C = PPT then  has  the rank (M)(NS - 1) T -1 T 

by  theorem 5. 5.4 of reference 4. 

Therefore, its inverse [C(XTWX) C ] exists. 

Since  C(XTWX)-lCT  also  has  dimension (M)(NS - 1) x (M)(NS - l), it is nonsingular. 
-1 T -1 

20 



APPENDIX B 

DETAILS OF SOLUTION OF EQUATION (5) 

The  solution of equation (5) requires  some  rather  involved  matrix  manipulation. 
The  calculation of the  matrix  C(XTWX)-lCT  and its inverse is particularly  complicated. 

Let us  define  the  matrix  B  to be 

B = C(XTWX) -1 C T (6) 

and its inverse  to be B - l  = D. From the  definition of the  partitioned  matrices  C  and 
(XTWX)-l, it can be seen  that  B is composed of submatrices of the form 

for j = i and i = 1, . . . , NS - 1; 

B.. = -Ci(X WX). C 
1J  ~j 

T -1 T 

f o r  j = i - 1  with i = 2 , .  . . , N S - 1   a n d f o r  j = i + l  with i = l , .  . . , N S - 2 ;  

for  other  combinations of i and j .  Since  there are at most  only  three  nonzero  subma- 
tr ices  in  each row of B,  these  can  be  redefined as follows: 

Bil = -Ci(X T WX); 1 T  Ci-l  for i =  2, . . . , NS - 1 

B~~ = ci[(xTwx)f 1 + (xTm)i;lllCT fo r  i = 1, . . . , NS - 1 

Bi3 = -C&X T WX)-l  CT f o r  i =  1, . . . , NS - 2 i+ l  1+1 

Consequently,  matrix  B  takes  the  form 
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B =  

0- 

- 
B12 B13 

B21  B22  B23 

0 ” 

4 

B31 B32  B33 0- 

BNS-3, 1 BNS-3, 1 BNS-3, 3 

0 BNS-2, 1 BNS-2, 2 

0 BNS-l, 1 

- 

0 

BNS-2, 3 

BNS-l, 2 - 

0- 

0- 
L 

Matrix D has  the  form 

D =  

NS-1 

From  the  definition of the  inverse of a matrix,  BD = I, it can be seen that the  product 
matrix BD has  the form 

BD = 

22 

(BNS-2, lDNS-3,  1+BNS-2, 2DNS-2, IfBNS-2, 3 D NS-1,1 ) 

(BNS-l, 1 D NS-2, l fBNS- ly  2DNS-1, 1 ) . . .  
” 



If I is partitioned  into  submatrices of the  form 6.. where 6.. is the  identity 
13 ' 13 

matrix  for j = i and 6.. is null f o r  j # i, then  each  column  k of the  product  matrix 
BD  becomes a series of simultaneous  linear  matrix  equations of the  form 

1J 

BNS-2, 1 D NS-3, k + BNS-2, 2DNS-2, k " BNS-2, 3 D NS-1, k = 6NS-2, k 

BNS-l, 1 NS-2, k + BNS-l, 2 NS-1, k = 6NS-1, k D  D  (10) 

The  solution of this  system is begun  by  left  multiplying  equation (7) by B;;. (The proof 

that B12 has  an  inverse is the  same as the  proof for  the  existence of [C(XTWX) C ] 
found  in  appendix A. ) Solving  equation (7) for Dlk gives 

-1 T -1 

Substituting  for Dlk in  equation (8) and  solving  for D2k gives 

-1 
D2k = (B22 - B21B;f B13) (62k - B21B;i61k - B23D3k) 

Similarly,  substitution of D2k into  equation (9) will give a similar  solution  for  DQk. 
This  process  can be repeated  for  the  entire  set of equations. 

E and A .  Let   El  = BI2  and let E l  = B - B 1 l E ~ ~ l B l - l ,  fo r  1 # 1. Let  A1 = 61k 

and  let A l  = 6 - B A for  1 # 1. Then  the  solution of the first NS - 2 
equations  can  be  written as 

However,  the  matrix  algebra  can  be  simplified by  defining two auxiliary  matrices 

12 

Ik  11  1-1 1-1 
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DZk= E-lbl 1 - BZ, SD,?+l,k) 

Substituting f o r  DNs -2, k  into  equation (10) and  solving  for DNS-l, gives 

DNS-l,  k = NS-1 ANS-l E -I 

Since all the El  and Az can  be  found  in  terms of known quantities, DNS-l, can  be 
determined  uniquely.  Similarly, all the  Dzk  can  be  found  by  substitution  into  equa- 
tion (11) for  1 = NS - 2, . . . , l. 

This  scheme is easily  programmed.  Since  the  Bij  have  dimensions 3 X 3 f o r  a 
quadratic  and 4 X 4 for  a cubic,  the  matrix  E is either a 3 X 3 or  a 4 x 4. Consequently, 
the  largest  matrix  that  must  be  inverted by numerical  methods is a 4 x 4.  This  inver- 
sion  can  be  done  with good accuracy by  any  standard  numerical  matrix  inversion  tech- 
nique.  Even  though  this  scheme  involves  many  arithmetic  operations,  the  round-off 
error  in  the  f inal   answers  becomes  apparent only in  the  12th or  13th  significant  figure. 

Once  the  matrix  D is determined,  equation (5) becomes 

AT = (YTWX) [I - (XTWX)-lCTDC] (XTWX)-l 

The  next  problem is to  form  the  matrix  product  T = C DC. This  is somewhat  compli- 
cated  because  the  submatrices of T  take  special  forms  depending  on  their  location  in 
the  matrix.  These  forms  are  readily  seen  from  the  definition of the  partitioned  matrices 
C  and  D.  The  forms  are  summarized as follows: 

T 

for-the  corner  elements.  The  scalar s equals +1 if n = j and -1 if n # j .  

for  the  noncorner  elements of the  top  and  bottom  rows.  The  scalar s equals +1 for  
j = 1 and -1 for  j = NS. 

T .  = s(Cj Djn - CjnDj-l,  n)Cn T  T 
1n 
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for  the  noncorner  elements of the first and last columns.  The scalar s equals cl  for 
n = 1 and -1 fo r  n = NS. 

for  the  elements  in  the  ffmiddleff of the  matrix. 
Once T is defined,  the  solution of equation (5) is quite  straightforward.  Since 

the  matrices are partitioned,  the  matrix  multiplication  can be done  in  several  steps 
which  can be programmed  easily.  These steps are as follows:  Since  equation (5) 
becomes 

AT = (YTWX) [I - (XTWX)-lT] (XTWX)-l 

the first step is to carry  out  the  multiplication  by Y WX. Equation (5) becomes T 

AT = [(YTWX) - (YTWX)(XTWX)-lT] (XTWX)-l 

Letting  the  product (YTWX)(XTWX)-l  define  the  vector VV, equation (5) becomes 

AT = [(YTWX) - (VV)T] (XTWX)-l 

Letting  the  vector  V be defined as (Y WX) - (VV)T,  equation (5) becomes T 

AT = V(XTWX)-l 

Writing  out  each of these  s teps   in   terms of the  partitioned  matrices  and  vectors  gives 

( T  

0 

A = A ~ ,  . . . , A ~ ~ )  T = (vl, . . . , vNS) 
0 (XTWX)& 1 

Consequently,  each  subvector of AT can be determined  independently of the  others. 
The nth subvector of AT can be written as 
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An T = Vn(X T WX);' 

Writing  out V in   t e rms  of its definition  gives 

V = (YTWX) - (VV)T 

(VI, * * * 7 vNs) = [(yTWX)l> . * . > (yTWX)Ns] - (vvl, * * 3 wNS) 

Therefore, Vn becomes 

rn NS 
Vn = (Y'WX)n - VVjTjn 

j= 1 

Writing  out VV in   t e rms  of its definition  gives 

vv = (YTWX)(XTWX) -l 

Consequently, 

Writing (YTWX)., (XTWX)-l,  and T in   t e rms  of their  row and  column  elements, VV 
becomes 

J j jn j 
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Similarly, Vn becomes 

r NS M+l 

NS M+l 

- x x VVj,kTj,  n,k,M+l 
j = l  k = l  1 

Once  the  vector Vn has  been  formed, it is a simple  matter  to  combine it vith the sub- 

matrix (X T WX);' to  get A ~ .  T 
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APPENDIX C 

PROGRAM  LISTING  AND FLOW CHART FOR FITLOS 

S I B F T C   F I T L O S  

I N P U T   V A R I A B L E S  
*******.*****.* 

T I T L E  - H O L L E R I T H  
M - DEGREE  OF 

NX - NUMBES  OF 
NS - NUMBER OF 
NE - NUMBER OF 
NF - NUMERICAL 

D I V I D I N G  

I O E N T I F I C A T I O N   O F   P R O B L E M  
POLYNOMIAL 
DATA  POINTS 

S P L I N E   J O I N T S   ( I N T E R I O R )  I F  USE?  CHOOSES THEM 
SEGMENTS  CHOSEN  BY  USER 

SIGNAL  TO  DETERMINE  WHICH  AUTOMATIC  HETHOS OF 
THE  DATA  INTO  SUBSETS - USE0  ONLY I F  BOTH NS 

AND NE  ARE  ZERO 
L R E F I T  - L O G I C A L   V A R I A B L E  

I F  L R E F I T  IS TRUE.  PROGRAM WILL CHECK  FOR  DUPLICATION 
O F   C O E F F I C I E N T S  

I F  L R E F I T   I S   F A L S E ,  NO CHECK WILL B E  MADE 
TRANX - L O G I C A L   V A R I A B L E  

I F  TRANX I S  TRUE. A LOG(10)   TRANSFORMATION WILL B E  

I F  TRANX  IS  FALSE,  NO  TRANSFORMATION WILL BE MADE 
MADE O N  X AND  XN 

TRANY - L O G I C A L   V A R I A B L E  
I F  TRANY IS TRUE, A LOG(10)   TRANSFORMATION WILL B E  

MADE ON Y AND YC 
I F  TRANY IS FALSE,  NO  TRANSFORMATION WILL BE MADE 

I F  NPUNCH I S  TRUE.  NO C O E F F I t I t N T  CAROS U I L L   B E  PUNCHED 
I F  NPUNCH I S  FALSE.  SEGMENT  COEFFICIENTS WILL BE 

NPUNCH - L O G I C A L   V A R I A B L E  

PUNCHEO  ON  CAROS 
X - ARRAY OF  INDEPENDENT  VARIABLES 
Y - ARRAY OF  DEPENDENT  VARIABLES 
W - ARRAY OF  WEIGHTS - MAY BE  READ  AS  ALL   ZER3S 

XM - A R R A Y   O F   S P L I N E   J O I N T S  
TOL - TOLERANCE FOR FORCE F I T T I N G  AND K E F I T   C H E C K I N G  

KASES - NUMBER OF  ADDIT IONAL  CASES  USING SAME  DATA 

V A R I A B L E S   U S E D  I N  SUBROUTINE  CALLS 
*t+f**f+++lttttt4+t**+~*+*+***+t** 

x x  - 
YY - 
w w  - 

NXX - 
XM - 

L H I G H  - 
LLOW - 

xwx - 
YWX - 

c -  
A -  

YC - 

CORRESPONDING ARRAY OF  DEPENDENT  VARIABLES 
ARRAY  OF  ORDERED  INDEPENDENT  VARIABLES 

CORRES  POND I N G  ARRAY OF WE I G H T S  

A R R A Y   O F   S P L I N E   J O I N T S  
ARRAY O F   I N D I C E S  O F   F I R S T   P O I N T S   I N   E A C H   S U B S E T  
ARRAY O F   I N D I C E S  O F   L A S T   P O I N T   I N   E A C H   S U B S E T  

VECTOR  (Y-TRANSPOSE*WfX) 
MATRIX  OF  CONSTRAINTS 
VECTOR  OF  UNDETERMINED  COEFFICIENTS 
ARRAY  OF  DEPENDENT  VARIABLES  CALCULATED  FaOM  EOUATION 

NUMBER O F   P O I N T S   I N  XX. YY. AND W W  ARRAYS 

M A T R I X  ( X - T R A N S P O S E * W f X ) - I N V E R S E  

YC = XA 

PROGRAM V A R I A B L E S  
*** .+*++**f~t+t**  

NSS - NUMBER OF SEGMENTS  FOR NEW F I T  (RETURNED FROM 
NW - NUMBER OF  POINTS  WITH  ZERO  WEIGHT 

OEV - D E V I A T I O N  OF F I T T E D  CURVE FROM O R I G I N A L   D A T A   P O I N T S  
ERR - R E L A T I V E  ERROR 

S U B R O U T I N E   R E F I T )  

1 
2 
3 
4 
5 
6 
7 

9 
8 

10 
11 
12 
13 

15 
1 4  

1 6  
1 7  
1 8  
19 
20  
2 1  
2 2  
2 3  
2 4  
25  

27  
26  

28  
2 9  
30 
31 

3 3  
32  

3 4  
3 5  
3 6  
37 
38 
39 
40 
41  
42 
43  
4 4  
45 
4 6  
47 
48  
4 9  
5 0  
51  
52 
5 3  
5 4  
55 
56  
57 
58 
5 9  

28 



I 

c 
C 
C 

C 
C 

C 
C 

C 

C 
C 

C 
C 

C 
C 

C 
C 
C 
C 
C 

C 
C 

C 
C 
C 
C 

C 
C 

C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 
C 

C ~ C ~ C ~ + + ~ t t .  .. 
SUMXZ - SUM  OF Y SQUARE0 

SUMYZ - SUM OF YC SQUARED 
SUMXY - SUM  OF Y T IMES  YC 

SUMX - SUM  OF Y 

SUMY - SUM OF YC *+ - USED I N  C A L C U L A T I N G  
+ 
c 

C O R R E L A T I O N   C O E F F I C I E N T  

+++a++++++++ 
C + l t l * C I * C C *  

SUMD2 - SUM  OF  DEVIATIONS  SQUARED + VARIANCE  AND  STANDAR3 
SUMO - SUM  OF D E V I A T I O N S  +* - USED I N  C A L C U L A T I N G  

+ t t Z 4 t C I + . * +  D E V I A T I O N  
F N  - NUMBER  OF  DEGREES  OF  FREEDOM 

STDEV - S T A N D A R D   D E V I A T I O N  
V A R  - V A R I A N C E  

CORR - C O R R E L A T I O N   C O E F F I C I E N T  
CORMAX - M A X I M U M   P O S S I B L E   C D K R E L A T I D N   C O E F F I C I E N T  

I M  - MAXIMUM  ORDER OF P O L Y N O M I A L S   ( I M = 3 )  

+++a+++++at++t++ta++++++++a*+++++t+++t+++++t++t+++t+++++++++++++++ 

T O  CHANGE  THE  MAXIMUM  NUMBER OF P O I N T S  OR THE  MAXIMUM  NUMBER 3F 
SEGMENTS  THE  PROGRAM WILL FIT, THE  FOLLOWING TWO V A R I A B L E S   M U S T   B E  
CHANGED - 

I N X  - MAXIMUM NUMBER O F   D A T A   P O I N T S   ( I N X  I S  NOW SET A T  3 5 0 )  
I X M  - MAXIMUM NUMBER OF  SEGMENTS ( I X M  I S  NOW S E T   A T  1 0 )  

THE  FOLLOWING  DIMENSIONED  ' . 'ARIABLES  MUST  BE  CHANGED  ALSO - 
X 1   Y t  W v  XXI Y Y 1  W W ,  Y C t  AND  NBLANK  MUST  HAVE  O IMEVSION  INK 
XM M U S T   H A V E   D I M E N S I O N   ( I X M + l )  
LLOW AND L H I G H  MUST  HAVE  D IMENSION  IXM 
THE  REMAINING  ARRAYS  MUST  HAVE  DIMENSIONS  THAT  CORRESPOND T O  THE 
NUMBER OF  SEGMENTS AND  THE HIGHEST  ORDER  POLYNOMIAL - 

A ( t X M I I M + 1 1  X W X ( I X M v I M + l v I M + l )  
Y W X ( I X M , I M + l I  C ( I X M - l ~ I M , I M + l I  
B( IXM-1. IM. IM. IM)  B B ( I X M - l r I X M - 1 , I M ~ I M )  

~ + t t + . t ~ ~ t ~ I I ~ t + t t t . + + + ~ + t t + * a + + t t + + + t + + + + t t t + t + + + + f f + l + l + + + + t a + + + +  

THE  SUbROUTINE  DUBIF  I S  NECESSARY  FOR  DOUBLE  PRECISION  OUTPUT  ON 
THE  LEWIS  COMPUTER 

+ t + a ~ t t t + + t t ~ t + t t + t t + + + + + + ~ + t + + + + + t + + + + t + t * + + + + t + + + ~ + + + + + + + + + + + + + +  

D I M E N S I O N  T I T L E ( 1 2 ) , F M T ( 1 2 ) . F M T M ( L 2 )  
D I M E N S I O N  X ~ 3 5 0 ~ r Y ~ 3 5 D 1 ~ W ~ 3 5 0 ~ ~ X X ~ 3 5 0 ) . Y Y o r W W ~ 3 5 O l ~ Y C ~ 3 5 O l ~  

1 NBLANK ( 350 ) 
D I M E N S I O N  X M ( l l l r L L O W ( l O ~ ~ L H I G H ( 1 O l  
D I M E N S I O N  A ~ 1 0 ~ 4 l ~ X W X ~ 1 0 ~ 4 ~ 4 1 r Y W X l l D ~ 4 l ~ C ~ 9 1 3 . 4 ) , B ~ 9 ~ 3 ~ 3 ~ 3 l ~  

1 B E (  91 91  313 1 
D O U B L E   P R E C I S I O N  B.BB,AIYCIXWXIYWX.C 
D O U B L E   P R E C I S I O N  D E V I E R R ~ V A R , S T O E V I C O R R , C O R " X . S U M X ~ S U M Y ~ S U M X Y ~  

1 SUMX2.SUMY2.SUMD.SUMDZ 

L O G I C A L   L R E F I  T. TRANXt  TRANY WNPUNCH 
E X T E R N A L   D U B I O  

I N X  = 350 
I X M  = 10 
I M  = 3 

S E T   D I M E N S I O N S  OF ARRAYS I N  SUBROUTINES 

C A L L  O R O ( X I Y , W * X X I Y Y , W W , N B L A N K , ~ ~ G )  
C A L L  S E G ( X X ~ Y Y . X P ~ L L O W ~ L H I G H 1 3 5 0 . l l . 1 0 )  
C A L L  D E F ~ X X ~ Y Y ~ W W ~ X M ~ L L O W ~ L H I G H ~ X W X ~ Y W X ~ C ~ 3 5 0 ~ I l ~ l D ~ 4 ~ 3 ~ 9 )  
C A L L  S L V ( C , X W X , Y W X I P I ~ . B ~ ~ ~ . ~ . ~ . ~ ~ )  
C A L L  R F T ( X X I A ~ X M ~ L L O W ~ L H I G H ~ ~ ~ ~ . ~ ~ ~ ~ ~ ~ ~ )  
C A L L   T R N ( X I Y I X M . Y C . ~ ~ O ~ ~ ~ I  
C A L L  D X M ( X X ~ X M ~ L L O W ~ L H I G H 1 3 5 0 . l l r 1 0 )  
C A L L  O S P L ~ X X ~ X M ~ L L O W ~ L H I G H ~ 3 5 O ~ l l ~ l O l  
C A L L   D N S ( X X ~ X M . L L O W , L H I G H ~ 3 5 0 ~ 1 1 ~ 1 0 )  
C A L L  D H ( X X . Y Y . X M I L L O W . L H I G H ~ ~ ~ ~ .  11.10) 
C A L L  O L ( X X ~ Y Y , X M ~ L L O ~ . L H I G H ~ 3 5 0 ~ 1 1 ~ 1 0 )  

60 
61  
62 

64 
63 

6 5  
66 
67 
68 
69 
70 
71  
72 
73 
74 
75  
76 
77 
78 

80 
79 

8 1  
82 
83 
84 
8 5  
86 
87 
8 8  
8 9  
90 
91 
9 2  
93 

95 
94 

96 
9 7  
96 
99 

100 
101 
102 
103 
104 
105 
106 

108 
107 

109 
110 
111 
112 
1 1 3  
114 

116 
115 

117 
1 1 8  
119 
120 

1 2 2  
1 2 1  

123  
124 
125 
126 

128 
127 

130 
129 

132 
131  

133  

29 



C 
KASES = 0 

C 
C I F  KASES = 01 READ A NEW T I T L E  AND A NEW SET OF X.Y.W DATA 
C I N  ANY CASE9  READ  NEIJ  VALUES FOR  MINXINS.NPIYBINF,REFIT. 
C 
C 

8 0   W R I T E  16.24) 

TRANXvTRANYvTOL 

I F  (KASES.EO.0)  READ 1 5 ~ 4 )   T I T L E  
8 1  READ  1511)  M,NX~NS,NBINF.LREFI 

KASES = KASES-1 
I F  (KASES.GE.0) GO TO 8 4  
REAO ( 5 . 4 )  FMT 
READ ( 5 r F M T )  (X(I).Y(I).W(II+I 

C 
C 
C 

I F  ALL  WEIGHTS  ARE  READ  AS 01 

D O  8 2   I = l . N X  
I F  lW(I) .LE.O.)  NW = N W + l  

NU = 0 

82   CONTINUE 
I F  (NW.NE.NX) GO TO 04 
DO 8 3   I = l r N X  

8 3  WII) = 1. 
r. 

T,TRANX.TRANY.NPUNCH.TOL 

= l v N X )  

SET  ALL  WEIGHTS TO 1 

C 
C 

TEST  INPUT  TRIGGERS  TO SEE I F   A D D I T I O N A L   D A T A  I S  NEEDED TO D I V I D E  
THE  CURVE  INTO  SEGMENTS 

8 4   I F  tNB.NE.0)  READ  15.41  FMTM 
I F  (NB.NE.0)  READ ( SvFMTM)  tXM( I ) . I = l . N B )  
I F  (NB.GT. IXM)  NB=IXM 
I F  (KASES.LT.0)   READ  (5.1)   KASES 
IF(TRANX.OR.TRANY1  CALL TRANSF(XIYINXIXM.NB.TRANX.TRANY)  
WRITE (6.10) T I T L E  

C 
C 
C 

CHECK  FOR S U F F I C I E N T  NUMBER  OF  DATA P O I N T S  AND  CORRECT  ORDER OF 
POLYNOMIALS 

C 
I F  (NX.GT.M.AND.(M.EO.Z.OR.M.EO-3))  GO TO 05 
H R I T E  (6.23) M.NX 
G O  TO 80 

C 
8 5  C A L L  O R D E R ( X ~ Y . W I N X , X X I Y Y I W W I N X X )  

CALL S E G M N T ( X X . Y Y . X M . L L O W . L H I G H , N X X . N S I N B I N F , M . T O L , I X M )  
CALL D E F M A T ( X X . Y Y . W W . X M . L L D W . L H I G H . N X X ~ N S . M ~ X W X . Y W X ~ C 1  
X M ( I X C + l )  = X X l 1 )  
CALL ASOLVE(CIXWX~YWXIA~NSI"  
I F  (NS.EO.1)  LREFIT=.FALSE. 
I F   ( L R E F I T )   C A L L  REFZT(XXIA ,XMILLOWILHIGHINXXINSINSS~M.TOL)  

L 
C WRITE  OUTPUT  DATA 
C H R I T E  ORDER  OF  POLYNOMIALS AND NUMBER OF SEGMENTS 
r L 

8 6   W R I T E   1 6 . 1 1 )  M.NS 
I F  (NS.EQ.0) GO TO 8 0  
I F  ( M . E Q . 3 )  GO TO 90 

C 
C 

WRITE  EOUATION FOR F I T T E D  CURVE FOR M=2 
W R I T E   C O E F F I C I E N T S   I N   S T Y L E  FOR M=2 

r 

C 

C 
C 

l. 

I F  (TRANX.AND.  TRANY)  WRITE (6.39) 
I F  (TRANX.ANO..NOT.TRANY) WRITE (6.40) 
I F  (.NOT.TRANX.AND.TRANY)  WRITE  (6.41) 
I F  ( .NOT.TRANX.AND..NOT.TRANY) W R I T E   ( 6 . 4 2 )  

W R I T E   ( 6 . 4 4 )  
W R I T E   ( 6 9 1 2 )  

W R I T E   ( 6 . 1 3 )   ( I A ( N . J ) . J = l . 3 ) . N = l . N S )  
G O  TO 9 1  

WRITE  EOUATION FOR F I T T E D  CURVE FOR M=3 
W R I T E   C O E F F I C I E N T S  I N   S T Y L E  FOR M = 3  

1 3 4  
1 3 5  
136 
137 
1 3 8  

140 
139 

142 
141 

143 
144 
1 4 5  
146 
147 
148 
149 
1 5 0  
1 5 1  
1 5 2  
1 5 3  
1 5 4  
1 5 5  
1 5 6  
157 
1 5 8  

160 
1 5 9  

161 
1 6 2  

164 
1 6 3  

165 
166 
167 
1 6 8  
1 6 9  
170 
1 7 1  
1 7 2  
1 7 3  

1 7 5  
174 

1 7 6  
1 7 7  
1 7 8  
1 7 9  
1 8 0  
1 8 1  

1 8 3  
1 8 2  

1 8 4  
1 8 5  
1 8 6  

1 8 8  
1 8 7  

1 8 9  
190 
191 
1 9 2  
193 
194 
195 
196 
1 9 7  
1 9 8  
1 9 9  

201 
2 0 0  

2 0 2  . 
2 0 3  ' 
204 

30 



C 
90 I F  (TRANX.AND.TRPNY) WRITE ( 6 . 4 6 )  

I F  (.NOT.TRANX.AND.TRANYJ WRITE ( 6 . 4 8 )  
I F  (TRANX.AND..NOT.TRANY) WRITE 16.47) 

I F  (.NDT.TRANX.AND..NOT.TRANY) WRITE ( 6 . 4 9 )  
WRITE ( 6 . 1 2 )  
WRITE ( 6 , 4 5 1  
WRITE ( 6 . 1 4 )  ( (A (N .JJ rJ=1 .4 ) .N= l .NS)  

C 

C 
C C A L C U L A T E   F I T T E D   V A L U E S   O F  Y AND  BACK  TRANSFORM  DATA 

91 D O  103 I = l r N X  
DO 100 N=l.NS 
NN = N 
I F  (X ( I J .LE .XM(N) )  GO T O  101 

100 CONTINUE 
101 Y C I I )  = A ( N N S M + l )  

00 1 0 2  Jz1.M 

Y C ( I J  = Y C ( I ) * X ( I ) + A ( N N , J J )  
JJ = M + l - J  

103  CONTINUE 
102 CONTINUE 

I F  (TRANX.OR.TRANY) C A L L  BTRANS(X*YIXMIYC.NX.NSITRANX.TRANX*TRANY) 
., 
C 
C 

W R I T E   S P L I N E   J O I N T S  

WRITE (6.15) 
WRITE ( 6 1 1 6 )  X M ( I X M + l ) r ( X M ( I ) r I = I r N S )  

C 
C 
C 
C 

C A L C U L A T E   D E V I A T I O N   A N D   R E L A T I V E  ERROR 

C 
CALCULATE SUMS  FOR VARIANCE  AND  CORRELATION  COEFFIC IENT 

C 
WRITE  XsY.Y*.DEVIATION.  AND  RELATIVE ERROR 

SUMX = 0.000 
SUMY = O.OD0 
SUMXY = O.ODO 
SUMXZ = O.ODO 
SUMY2 = D.OD0 
SUMO = O.ODO 
SUMO2 = O.ODO 
WRITE (6 .21 )  
D O  110 I = l , N X  
DEV = Y C ( I J - Y ( I )  
I F  IY( I I .NE.O.0)  GO TO 111 
ERR = D E V / Y C ( I )  
GO TO 112 

1 1 1  ERR = D E V / Y ( I I  
112 SUMX = S U M X + Y ( I )  

SUMXY = SUMXY+Y I I 1 *YC ( I 
SUMY = SUMY+YC( I )  

SUMXZ = SUMXZ+Y ( I ) * Y (  I ) 
SUMYZ = SUMYZ+YC( I J *YC( 

SUMD2= SUMDZ+DEV+DEV 
SUMD = SUMD+DEV 

C 
C 
C 

CALCULATE  AND  WRITE  VAR 

C 
C O E F F I C I E N T  

F N  = F L O A T l N X - M * I N S - l ) )  

1 1 3  W R I T E   ( 6 , 2 0 1   X I I J p Y ( 1 J  * 
I 

Y C ( I ) ~ D E V I E R R  

ANCE, STANDARD  DEVIATIOPII   AND  CORKELATION 

. ~ ~. 

F X  = F L O A T ( N X 1  
VAR = (SUMD2-SUMD*SUMD/FX)  /FN 
STDEV = SQRTtVARJ  
CORR = F N + ( F X * S U M X Y - S U M X ~ S U M Y ) / F X / S O R T ( ( F X * S U M X 2 - S U M X + S U M X ) *  

CORMAX = FN/FX 
1 (FX+SUMYZ-SUMY*SUMY) J 

C 
WRITE ( 6 1 2 2 )  VAR*CORRvSTDEV*CORMAX 

I F  ( L R E F I T J  GO TO 8 8  

GO T O  7 9  
WRITE ( 6 . 4 3 )  

88 IF (TOL.LT.0.) GO TO 7 8  
WRITE ( 6 ~ 3 7 )  

205 
206b 
207 
208 
209 
210 
211 
212 
213 

215 
214 

216 
217 
218 
219 

221 
220 

222 
223  

225  
224 

227 
226 

228 
229 
230 
231 

233 
232 

234 
235 
236 

238 
2 3 7  

239 
240 
241 
242 
243 
244 
245 

247 
246 

248 
249 

251 
250 

252 
253 
254 
255 

257 
256 

258 
259 

261 
260 

262 
263 

265 
2 6 4  

266 
267 
268 
269 

271 
270 

272 
273 
274 
275 
276 
277 
278 

31 



7 8  

7 7  

7 9  

89 

C 
1 
3 
4 

11 
1 11 

GO TO 79 

N0  = NS-1 
NS = NSS 

YPTS = L H I G H ( I 1  
X M ( 1 )  = X X t N P T S )  
CONTINUE 

00 77 I = l r N S  

I F  (TRANX.OR.TRANY)  CALL TRANSF(X.Y.NX*XM.NBITRANX~TRANY)  
CALL DEFMAT(XX,YY,WWIXM,LLOW,LHIGHINXX~NSIM,XWX,YWX,C)  
CALL A S O L V E ( C I X W X . Y W X . A . N S ~ M )  
W R I T E   ( 6 9 3 8 )  
W R I T E   ( 6 , 3 6 1  
WRITE ( 6 . 2 4 )  
WRITE ( 6 , 1 0 1   T I T L E  
WRITE ( 6 , 3 6 1  

G O  TO 8 6  
L R E F I T  = .FALSE. 

I F  (NPUNCH) GO TO 80 
WRITE ( 6 , 3 2 1  T I T L E  
WRITE ( 6 . 3 3 )  N S , ( X M ( N ) . N = l r N S )  
I F  (M.EQ.3) GO TO 89 

GO TO 80 

G O  TO 8 0  

W R I T E   ( 6 , 3 0 1   ( ( A ( N , I ) , I = l , 3 ) , N = l , N S )  

W R I T E   ( 6 . 3 1 )   ( ( A ( N . I ) . I = 1 . 4 I ~ N = l . N S )  

FORMAT  (513.4L3,F12.6)  
FORMAT ( 2 4 1 3 )  
FORMAT ( 1 2 A 6 )  
FORMAT ( 1 H   9 5 x 9   1 2 A 6  1 
FORMAT  I lHOs22HDEGREE OF POLYNOMIAL  =, IS, lOXrZOHNUMBER 

1 2  FORMAT ( l H O r 4 1 H S E G M E N T   C O E F F I C I E N T S   I N   A S C E N D I N G  ORDER 
1 3  FORMAT ( 1 H   . l P 3 0 2 5 . 1 5 )  
1 4  FORMAT ( 1 H   r l P 4 D 2 5 . 1 5 )  
1 5  FORMAT ( l H O v 1 9 H S P L I N E   J O I N T S  ARE - 1  

1 = . I 5 1  

20 FORMAT ( 1 H  r l P 2 E 1 7 . 7 r 1 P 2 0 2 5 . 1 5 ~ O P D 2 5 ~ 1 5 )  
1 6  FORMAT ( 1 H   , 2 1 X 1 7 G 1 5 . 7 )  

OF  SEGMENTS 

- )  

2 1  FORMAT ( 1 H 0 9 9 X 9   l H X t  1 4 X , l H Y ~ 2 3 X , 2 H Y * ~ 2 3 X I 3 H D E V I Z O X . S H R - E R R I  
2 2  FORMAT (lHO~/slH0~50HCORRELATION OF F I T T E D  DATA TO O R I G I N A L   0 4 T A  

1 , / r l H 0 ~ 1 6 X ~ l O H V A R I A Y C E  = , l P D 2 5 . 1 5 r 1 2 X s 1 9 H C O R R E L A T I O Y  I N 0  
2EX  =rOPD25.15, / .1H  r6Xe20HSTANDARD  DEVIATION  = , lPD25.15,1OX,  
321HMAXIMUM  CORRELATIOW  =,0PD25.15) 

2 3  FORMAT  ( lH0930HCANNUT MAKE V A L I D   F I T   W I T H  M = 1 1 3 1 9 H  AND  NX r . 1 3 )  
2 4  FORMAT ( 1 H 1 )  

3 1  FORMAT ( l H $ , 4 D 2 0 . 1 3 )  
30 FORMAT ( l H S . 3 D 2 0 . 1 3 )  

3 2  FORMAT  (1HS r 1 Z A 6  1 

3 6  FORMAT ( 1 H   r 8 2 H D U P L I C A T I O N  OCCURED I N  F I R S T  SET OF C O E F F I C I E N T S  - 3 3  FORMAT ( l H S r I 3 r ( / , l H b , S E 1 4 . 7 ) )  

lCURVE WAS R E F I T   I N  NEW SEGMENTS) 
3 7  FORMAT ( 1 H   9 4 3 H N O   D U P L I C A T I O N   I N   F I R S T   S E T  OF C O E F F I C I E N T S )  
3 8  FORMAT ( ~ H O I ~ O H R E F I T  CHECK WAS MADE) 
39 FORMAT ( l H O . 6 9 H E Q U A T I O N   F I T T E D  I S  LOG Y = A0 + A 1  (LOG X 

40 FORMAT  ( lHO,64HEQUATION  F ITTED I S  
1) + A 2   ( L O G   X ) * * 2  1 

1 A 2   ( L O G   X ) * * Z )  

1 X * * 2 )  

1 2  1 

Y = A 0  + A 1  (LOG X )  + 

4 1  FORMAT ( ~ H O I S ~ H E Q U A T I O N   F I T T E D  I S  LOG Y = A0 + A 1  X + A2 

4 2  F O R M A T   ( l H O , 5 2 H E Q U A T I O N   F I T T E O   I S  Y = A 0  + A 1  X + A2 X + +  

4 3  FORMAT ( l H 0 1 1 9 H N 0   R E F I T  CHECK  MADE) 

4 5  FORMAT (1H0,10X~ZHA0~23X~2HAlr23X12HA2r23XIZHA2~23X~2HA3) 
4 4  FORMAT ( l H O r l O X . Z H A ~ r 2 3 X . 2 H A l r 2 3 X 1 2 H A Z )  

4 6  FORMAT  ( lHO,84HEQUATION  F ITTED I S  LOG Y = A 0  + A I  (LOG X 
1) + A 2   ( L O G   X ) + + Z  + A 3   ( L O G   X 1 + * 3 )  

1 A 2   ( L O G   X j - 2  + A S  ( L O G   X ) * s 3  1 

1 X * r 2  + A 3   X * * 3 )  

1 2  + A3  X**3  1 

4 7  FORMAT  (1HO.B lHEQUATION  F ITTED I S  Y = A 0  + A 1  (LOG X )  + 

4 8  FORMAT  ( lHO.66HEQUATION  F ITTED I S  LOG Y = A D  + A 1  X + A2 

4 9  FORMAT  (1HO.63HEQUATION  FITTED I S  Y = A 0  + A 1  X + A2  X*+ 

r 
1. 

E NO 

2 7 9  
2 8 0  
2 8  1 
2 8 2  
2 8 3  

2 8 5  
2 8 4  

2 8 6  
2 8 7  
2 8 0  
2 8  9 
2 9 0  
2 9 1  
2 9 2  

2 9 4  
2 9 3  

2 9 5  

2 9 7  
2 9 6  

2 9 8  
2 99 
3 0 0  
3 0  1 
3 0 2  
3 0 3  
3 0 4  
305 

307 
3 0 6  

30 8 
3 0 9  
310 
311 
3 1 2  
3 1 3  
314 
3 1 5  
3 1 6  
3 1 7  
318 
319 
3 2 0  
3 2  1 
3 2 2  
3 2 3  
3 2 4  
3 2 5  
3 2 6  
3 2 7  
3 2  8 
3 2 9  
3 3 0  
3 3 1  
3 3 2  
3 3 3  
3 3 4  
3 3 5  
3 3 6  
3 3 7  
3 3 8  
3 3 9  
3 4 0  
341 

3 4 3  
3 4 2  

3 4 4  
3 4 5  
3 4 6  
3 4 7  
3 4 8  
3 4 9  
3 5 0  
351 
3 5 2  
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FITLOS 

Q 
[Set dimensions of variable  dimeAsioned  arrays in 

6 
Read t i t l e   ca rd  

Read variable  format FMT 

I 

NB 

to format  FMTM 

I ORDER. SEGMNT, DEFMAT a n d  ASOLVE 
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Cal l   subrout ine  REFIT wh ich  I 
r e t u r n s   N S S   a n d  

,-&- Call  BTRANS 

new  index  arrays1 

==? Make  stat ist ical  analysis1 

(output) 

+“l LREFIT 

Punch  coef f i c ien t   cards  1 
Call  TRANSF 

. L._ 

34 



APPENDIX  D 

VARIABLES USED BY SEVERAL SUBROUTINES 

XM Array  of spline  joints. 

LLOW Array of indices of the first point  in  each  subset. LLOW(1) = 1 and 
LLOW(N) = lowest I such  that XM(N - 1) 5 X(1) 5 XM(N) for  
N =  2, . . . , NS. 

LHIGH Array  of indices of the last point  in  each  subset. LHIGH(N) = highest I 
such  that XM(N) 5 X(1) 5 XM(N + 1) for  N = 1, . . . , NS - 1, and 
LHIGH(NS) = Nx. 

XWX Multidimensioned a r r a y  (XTWX)-l.  The  subscripts  on XWX have  the 
same  order  as the  subscripts on matrix (X WX)-l of appendix B. T 

YWX Multidimensioned a r r a y  Y WX. The  subscripts  correspond  to  the  sub- T 

scr ip ts  on vector Y WX of appendix B. T 

C 

A 

Multidimensioned a r r a y  of constraints.  The  subscripts  correspond  to  the 
subscripts  on  matrix C of appendix B. 

Multidimensioned array of undetermined  coefficients.  The  subscripts 
correspond  to  the  subscripts of vector  A of appendix B. 

X  Array of the  ordered  independent  variable. 

Y Array of dependent  variable  that  corresponds  to  X. 

In  the  main  program  FITLOS,  X  and Y a r e  the  names of the  input arrays, while 
XX and YY a r e  the  names of the  ordered  data. 
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APPENDIX E 

DESCRIPTION OF SUBROUTINES 

The  subroutines of the  program  FITLOS are described  in  this  appendix. After the 
descriptions, all the  subroutines are listed  followed  by all the  flow  charts. 

TRANSF 

Subroutine  TRANSF  makes a base  10  log  transformation  on  the  input  data. If any of 
these  data are not greater  than  zero, TRANSF changes  that  number  to 10 . -30 

BTRANS 

Subroutine BTRANS converts  the  transformed  data  back  to its original  form.  Since 
YC, the  calculated  values of y*, are actually loglo(YC), these  data are also  back  trans- 
formed so they  have  the  same  form as the  input  data. 

ORDER 

Subroutine  ORDER  arranges  the  input  data  in  order of ascending x. Since  the  defi- 
nition of a spline  function  requires  that xi < xi+l,  ORDER averages  the  y's for which 
duplicate  x's  occur.  This  average  y is a weighted  average, 

The  total  weight, c w  becomes  the  weight of the  average  point.  To  preserve  the  input 

data,  the  ordered  data are put  into new a r rays .  

j y  
j 

SEGMNT 

Subroutine SEGMNT determines  the  spline  joints  and  the low and  high  indices of the 
points  in  each  subset. SEGMNT first tests  the  variable NB. If NB # 0, the  spline 
joints  have  been  supplied  by  the  user. In that  case, SEGMNT calls  subroutine DIVXM to 
determine  the  index  arrays. If Nl3 = 0, SEGMNT then tests the  variable NS. 

If NS # 0, the  number of segments  has  been  chosen  by  the  user.  In  that  case, 
SEGMNT calls subroutine DIVNS to  divide  the  data as evenly as possible  among  the NS 
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subsets.  Subroutine DIVNS calculates  the  index  arrays  and  determines  the  spline  joints.  
If NS = 0, SEGMNT tests the  number of data  points NX. 

If NX 5 3M, SEGMNT calls subroutine  SPESHL  to  make a special  division of the 
data  into  one or two subsets  with  specially  determined  spline  joints.  These special 
spline  joints  and  the  index  arrays are listed  in  the  main-text  section HOW DATA ARE 
DIVIDED INTO SUBSETS. 

If NX > 3M, SEGMNT sets the  number of subsets  to be the  maximum  possible  num- 
ber based  on  the  number of data  points  and  the  degree of the  polynomial.  This  number 
is (NX - l)/M. 

SEGMNT then tests the  variable  NF. If NF < 0, subroutine  FFLOW is called  to 
do a force-fit  division  starting at the low end of the  data. If N F  > 0, subroutine  FFHIGH 
is called  to  do a force-fit  division  starting at the  high  end of the  data. If NF = 0, sub- 
routine DIVNS is called  with NS = (NX - l)/M. 

DIVXM 

Subroutine  DNXM  divides  the  data  into  subsets  according  to  spline  joints  (xm)  chosen 
by  the  user.  DNXM  first  puts  the  (xm)  in  ascending  order.  Then it eliminates  any of 
the  (xm)  that are outside  the  range of x  and  adjusts  the  number of spline  joints NB 
accordingly. 

DIVXM then  determines  the  indices of the first and  last  points  in  each  subset.  Then 
it checks  whether  each  subset  has a sufficient  number of points. If LHIGH(1) - LLOW(1) 
+ 1 5 M, the re   a r e  not  enough points  in  subset I and  that  subset  must be combined  with 
its neighbors. DIVXM also  changes the spline  joints  to  correspond  to  the new index 
a r r ays .  

DIVNS 

Subroutine DIVNS divides  the data into NS subsets as evenly as possible. DIVNS 
f i r s t   makes  NS a "proper"  number. It chooses  the  smallest of three  possible  values 
wliich are as follows:  the  chosen NS, the  maximum  number of subsets  based  on  the 
number of data  points  and  the  degree of the  polynomial,  and  the  dimension of the   a r rays  
LLOW and LHIGH, which is called LIM in  the  Program. 

In  dividing  the  data as evenly as possible, DIVNS uses  fixed-point  arithmetic  to 
eliminate  the  possibility of a fractional  number of points  in a subset.  The  spline  joints 
and  the  index  arrays are determined as the  division  takes  place. 

SPESHL 

Subroutine  SPESHL  makes  an  arbitrary  division of the  data  into  one o r  two subsets. 
If the  number of points NX is not  greater  than 2M, only  one  segment is possible. If 
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NX is between 2M and 3M, SPESHL  divides  the data into two subsets  where  the  spline 
joints  and  index  arrays are defined  in  the  main-text  section HOW DATA ARE DIVIDED 
INTO  SUBSETS. 

FFLOW 

Subroutine  FFLOW  divides  the  data  into  subsets  by  force-fitting  starting at the low 
end of the  data.  The  maximum  possible  number of subsets NS appears  in  the  calling 
vector.  FFLOW first sets the  index arrays LLOW and LHIGH to  zero. It then starts 
.force-fitting as described  in  the  main body of the  report.  For a point  to  be  accepted  in 
a subset it must fall on  the  Lagrange  polynomial  within a given  amount of precision 
TOL;  that is, the  ratio I y(calc)/y(given) 1 = 1 + - TOL.  For  y(given) = 0, the  acceptance 
criterion is I y(ca1c) - y(given) 1 i TOL.  Spline  joints are determined as the last point 
in  each  subset. 

FFHIGH 

Subroutine  FFHIGH does a force-fit  division of the  data  into  subsets  starting at the 
high  end of the  data. It first sets  the index arrays  to   zero.   Then it starts force-fitting, 
but  begins  with  the NSth segment.  Consequently,  some  low-order  elements of LLOW 
and LHIGH could remain  zero.  If they  do,  the  nonzero  elements are moved down so 
that LLOW(1) = 1. The  elements of LHIGH and XM are moved down simultaneously 
and  the  value of  NS is reduced  accordingly. In all other  respects,  however, FFHIGH 
and  FFLOW are essentially  the  same. 

REFIT 

Subroutine  REFIT  checks  whether  the  curve  was fit in  more  segments  than  were 
necessary.  To  do  this, it checks  whether  the  coefficients  for a low-order  segment would 
give  the  same  value of y* for  points  in a higher  order  subset as the  coefficients  for  the 
higher  order  subset.  Subroutine  REFIT  works  in  essentially  the  same way as the  force- 
fitting  subroutines  except  the  test  polynomial is defined  by  the  coefficients  from  the  lower 
order  segment  instead of a Lagrange  polynomial.  The  use of TOL is the  same as in 
subroutine  FFLOW. 

MINVRT 

Subroutine MINVRT inverts a double  -precision  matrix  by  Gaussian  elimination 
(ref. 6). It also  calculates  the  determinant of the  matrix. If the  determinant is zero, 
that is, if the  matrix is s ingular ,   an  error   message is printed  and  the  null  matrix is 
returned  to  the  calling  program. If the  matrix is nonsingular, MINVRT finishes  the 
Gaussian  elimination.  Pivoting is not necessary  s ince  the  matr ices   are   small   and  wel l  
conditioned.  Then  the  inverse is multiplied by the  input  matrix  and  the  maximum  devia- 

38 



tion of the  elements of the  product  matrix  from  the  elements of the  identity  matrix is 
returned  to  the  calling  program.  This  measures  the  accuracy of the  inverse.  Finally, 
the  inverse is transferred  to  the  input  matrix  for  return  to  the  calling  program. 

DEFMAT 

Subroutine  DEFMAT  defines  the  matrices  (XTWX)-l, YTWX, and C from  the 
a r r a y s  of ordered  data  and  the  array of spline  joints.  The  multiple  subscripts  on  the 
a r r a y s  XWX, YWX, and C correspond  to  the  subscripts  on  matrices (X T WX)-l, 
Y WX, and C of appendix B. T 

ASOLVE 

Subroutine ASOLVE solves  equation (5). If there  is only  one  segment,  the  simple 
matrix  multiplication  A = (X WX)l (Y WX)l is performed.  For  more  than  one  seg- 
ment,  matrix B is defined  by  equation (6) of appendix B. Since  each row of B has only 
three  nonzero  submatrices,  only  these  three  submatrices are calculated.  Then  B is 
inverted  by  the  process  described  in  appendix B. The  E  and  DELTA  matrices are 
the  same as the  E  and A matrices  defined  in  appendix B. 

Since  there are four  types of elements  in  the  matrix  product C T B -1 C, there are four 
separate  techniques  used for  calculating  these  elements.  These  four  types of elements 
are defined  in  appendix  B. When the  matrix  product C T B -1 C has  been  formed,  the re- 
maining  multiplication is finished.  The  vectors V and VV are the  same as defhed  in  
appendix B. 

T -1 T 

Beginning  with  statement 500, the  matrix  multiplication of equation (5) is performed. 
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C 
S I B F T C   T R l  

C PROGRAM V A R I A B L E S  
C *++*+**++*+***t** 

C 
C YC - CALCULATED  VALUES  OF Y 
C 

S ' U B R O U T I N E   T K ~ ( X t Y r X M . Y C r I X . I X M 1  
D I M E N S I O N  X(IXI,Y(IXlrYC(IX).XM(IXMl 
D O U B L E   P K E C I S I O N  YC 
GO T O  3 

C 
C TRANSFORMATION  SUBROUTINE 
C 

LOGICAL  TRANX.TRANY 
ENTRY T R A N S F ( X . Y , N X , X M , N B , T R A N X , T R A N Y l  

I F  (.NOT.TRANX) G O  TO 1 
D O  10 I = l , N X  
I F  ( X ( I I . L E . O . 1   X ( I ) = l . E - 3 0  

111 X I 1 1  = A L O G l O ( X ( 1 ) )  
1 

jzI .E-30 

3 

1.E-30 

I F  (NB.EI2.G) GC TO 

11 X M ( I 1  = A L O G l O ( X P ( 1 ) )  
1 I F  (.NOT.TRANYl G O  TO 

DO 1 2  I = l , N X  
I F  ( Y l I l . L E . 0 . )   Y ( I ) =  

GO T O  3 
1 2  Y I I )  = A L O G l O ( Y ( 1 ) )  

r 
L 

ENTRY DTRANS(XIY.XMIYCINXINSITR~NXITRANX~TRANY) 
I F  (.NOT.TRANX) G C  TO 2 
D O  1 3  I = l . N X  

1 3  X I 1 1  = 1 0 . * * X l I )  

1 4  X Y ( I 1  = l C . + * i M (  I )  
D O  14 I= l . rqs 

X M ( 1 1 )  = l O . + + X M ( l l I  

DO 1 5   I = l . N X  
Y ( 1 )  = l O . + * Y I I l  

1 5   Y C I I )  = 1 0 . * * Y C ( I )  

2 I F  (.NOT.TRANY)  GC  TO 3 

C 
3 RETURN 

C 
S I R F  TC ORDR 

C PROGKAM V A R I A B L E S  
C +**tt*+****t.*~+* 

C 
C XT - 
C 
C 

YT - 
C 

WT - 

C 
NXT - 

C 
C 

x -  

C 
Y -  

C 
w -  

NX - 
C 
C NBLANK - 
C 
C 
C 

K K  - 
C 

N -  

C 
SUMY - 

C 
SUMW - 

O R I G I Y A L   V A L U E S  OF THE  INDEPENDENT  VARIABLE 
O R I G I N A L   V A L U E S  OF THE  DEPENDENT  VARIABLE 
O R I G I N A L   W E I G H T S  
NUMBER O F   C R I G I N A L   P O I N T S  

DRDERFO  ARRAY OF I N D E P E N D E N T   V A K I A B L F S  
ORDERED ARRAY OF DEPENDENT  VARIAHLES 
ORDERED  ARRAY  OF  WEIGHTS 
NlJMBER OF  ORDERED  DATA  POINTS 

BOOKKEEPING ARRAY, N B L A N K (   I I = O   M E A N S   P O I V T  I HAS 

I N D E X  O F  THE  AVERAGE0  POINT I N  THE NEW AR9AYS 
HEEN  THANSFERED T O  THE NEW ARRAYS 

NUMBER C F   P O I N T S   W I T H  SAME XT  VALUE 
SUM OF YT  VALUES  FOR  POINTS  WITH  SAME  XT  VALUE 
SUM OF WEIGHTS  FOR  POINTS  WITH  SAME X T  VALUE 

D I M E N S I O N  X T ~ I X ~ , Y T ~ I X ~ ~ W T ~ I X ~ 1 X o r Y ~ I X ) 1 W o r N B L A N K ~ I X ~  
SUBROUTINE O R D ( X T I Y T I H T , X I Y I W I N R L A N K , I X )  

GO  TO 300 

1 
2 
3 
4 
5 
6 

8 
7 

9 
10 
11 
1 2  
1 3  
1 4  
1 5  
16 
17  
18 
1 9  
20 
21 
22 
2 3  
2 4  
25 
2 6  
2 1  
28 
29 
30 
3 1  
3 2  
33 
3 4  
35 

37 
36 

3 8  
39 
40 
41 
4 2  

1 
2 

4 
3 

5 
6 
7 
8 
9 

10 
11 
1 2  
1 3  
14 
1 5  
16 
1 7  

19 
18 

20 
2 1  
22 
2 3  
2 4  
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C 
C 
C 

ARRANGE DATA I N  ORDER OF ASCENDING X AND  AVERAGE Y FOR  WHICH 

C 
DUPLICATE  VALUES  OF X OCCUR 

ENTRY O R D E R ( X T . Y T . W T . N X T . X . Y . W I N X )  
r 
L 

DEBUG ~ X T ~ I l ~ Y T ~ I l ~ h T ~ I l ~ I ~ l ~ N X T ~  

105 Y R L A N K (   1 1  = 1 
D O  1OC I = l . N X T  

NX = 0 
K K  = 1 
DO 230  I = l , N X T  
I F  (NOLANK1  I).EQ.O1 GO TO 230  
N = l  
SUMY = Y T ( I l * W T l I l  
SUMW = W T ( I 1  
NBLANK(  I 1  = 0 
I 1  = I + 1  
DO 200  J = I I , N X T  
I F  (NBLANK(J) .EQ.OI   Gf l  TO 200  

SUMY = SUMY+YT(   J I *WT(  J l  
I F  ( X T ( J I . N E . X T ( I 1 1  GO T O  200 

SUMW = SUMW+WT( J 1  
4 = N + 1  
N B L A N K ( J 1  = 0 

I F  (KK.EQ.11  GU  TO 2 2 1  
D O  220 J= l .NX 
I F  ( X ( J I . L E . X T ( I I 1  GO T O  220  
K N  = NX-J+ l  
On 210  K = l r K N  
KK = NX+2-K 
X ( K K 1  = X ( K K - 1 1  
YCKK)  = Y ( K K - 1 1  

21; W ( K K 1  = W(KK-11 
GO T O  222 

2 0 0  CONTINUE 

22ci LONTINIJE 

2 2 1  X f K K I  = X T ( I 1  
222  K K  = K K - 1  

Y ( K K 1  = SIJMY/SUMh 
W ( K K  1 = SUMW 
NX = N X + 1  
K K  = N X + 2  

23C CONTINUE 
DEBUG ( X ( I 1 . Y ( 1 1 . W ( I ) ~ I = l . N X l  

C 
301- RETURN 

E N 0  

S I B F T C  SGHNT 
SURROUTINE S E G ( X ~ Y ~ X M , L L O W ~ L H I G H ~ I X ~ I X M ~ I L I  
D I M E N S I O N  X I I X l ~ Y ~ I X ~ ~ X M ~ I X M l ~ L L O W ~ I L l ~ L H I G H ~ I L l  
? € T U R N  - 

L 
C 
C 

D I V I D E   D A T A  I N T O  SUBSETS  BY  DETERMINING  SPL INE  JOIVTS  AND 
THE  YUMHtK   OF  POINTS I N  EACH  SUBSET 

l, 

C 
C 
C 

2 0 ;I 

C 

C 
C 

4 0 0  

ENTRY S E G M N T ( X I Y . X M . L L O W ~ L H I G H ~ N X ~ N S ~ N R ~ N F ~ M ~ T O L ~ L I M )  

D I V I D E   A C C O R O I Y G   T O   P R E O E T t K M I Y E O   B R E A K   P O I N T S  

I F  (NR.EQ.01 GO TO 400 
C A L L  O I V X M ( X ~ X M I L L O W , L H I G H , ~ X , ~ S , N B , M I  
WRITE ( 6 . 2 1 1  
SETURN 

D I V I D E   A C C O R D I N G  T O  PREDETtRMINEO WUMBER OF SEGMENTS 

I F  (NS.EQ.01 GO TO 500 
C A L L  O I V N S ( X , X M . L L O W ~ L H I G H ~ N X ~ N S ~ N B ~ M ~ L I M ) .  

25 
26 
27 
28 
2 9  
3 0  
31  
32 
3 3  
3 4  
3 5  
3 6  
37 

3 9  
38 

41 
4 0  

4 3  
42 

45  
4 4  

4 6  
4 7  
4 8  
4 9  
50 
51 
52  
5 3  

55  
5 4  

56  
57 
5R 
59 
6 0  
6 1  
6 2  
6 3  
6 4  
65  
6 6  
67 
6 8  
6 9  
7 0  
71 
7 2  

1 
2 

4 
3 

6 
5 

7 

9 
8 

1 0  
11 
1 2  
1 3  
1 4  
15  

17 
16  

1 8  
1 9  
2 0  
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W R I T E   1 6 , 2 3 1  
RETURN 

C 
C 
C 

DO THE NUMBER OF POIN 

500 I F  (NX.GT.3.M)  GO  TO 
C A L L  SPESHL(X.XM.LLOW 
W R I T E   1 6 , 2 7 1  NX 
RETURN 

C 

TS  REQUIRE A S P E C I A L   D I V I S I O Y  

C D I V I D E  ACCORDING  TO  FORCE F I T  SCHEME OR AS  EVENLY 4 s  P O S S I B L E  
C AMONG SEGMENTS 

609 NS = 1 N X - l ) I M  
I F   1 N F l   6 1 0 . 6 2 0 . 6 3 0  

610 CALL F F L O W I X ~ Y ~ X M v L L O W , L H I G H ~ N X , N S . N B v M ~ T O L )  
M R I T E   1 6 . 2 4 )  
RETURN 

C 
6 2 0   C A L L  D I V N S 1 X ~ X M ~ L L O W ~ L H I G H . N X 1 N S ~ N B ~ M ~ L I M )  

# R I T E   1 6 . 2 5 )  
RETURN 

r 
L, 

630 C A L L  F F H I G H 1 X , Y v X M ~ L L O W p L H I G H v N X ~ N S v N B v M v T O L )  
W R I T E   ( 6 . 2 6 )  
RETURN 

C 
20  FORMAT (lHO.47HNUMBER O F   D A T A   P O I N T S   R E Q U I R E S   S P E C I A L   D I V I S I O V I  
2 1  FORMAT ( l H O . 3 4 H S P L I N E  JOINTS  CHOSEN  BY  PROGRAMMER) 
22 FORMAT ( lH0.52HNUMBER OF  POINTS I N  EACH  SUBSET  CHOSEN  BY  PROG3AMME 

2 3  FORMAT  11HO.  83HlJATA D I V I D E D  AS EVENLY  AS  POSSIBLE AMONG THE VUMBE 
1R 1 

1 X  O F  SUBSETS  CHOSEN  BY  PROGRAMMER) 
24 FORMAT  ( lHO.74HDATA  DIVIDED  INTO  SUBSETS  BY  FORCE  F ITTING  STARTING 

2 5  FORMAT  11H0170HDATA  DIVIDED A S  EVENLY  AS  POSSIBLE 4 M O N G  THE 
1 AT  THE LOW END OF DATA) 

1 Y  NUMBtR OF SUBSETS) 

1 AT THE  HIGH  END OF DATA)  
2 6  F O R M A T   ( l H O s 7 5 H D A T A   D I V I D E D   I N T O   S U R S E T S  BY FORCE F I T T I N G  S 

2 7  F O R M A T   1 1 H G , I 5 , 2 X p 3 2 H P O I N T S   R E Q U I R E S   S P E C I A L   D I V I S I O N )  
C 

END 

S I B F T C  DVXM 

MAXIMU 

TARTING 

L 
C PROGRAM V A R I A B L E S  
C C + C + t t + t t i t . C . . . *  

L 
C T - TEMPORARY  STORAGE  USED I N  O R D E R I N G   S P L I N E   J O I N T S  
C KST - INDEX OF F I R S T   P O I N T  IN NEW SUBSET 
C 
C 
C NPLUS - NUMBER OF POINTS I N  1 1 + 1 )  SUBSET 
C NP2 - ONE HALF  THE  NUMBER OF P O I N T S   I N   S U B S E T  I 
C 

NSS - SUBSET  COUNTER WHEN A SUBSET DOES NOT  HAVE  SUFFICIENT 
P O I N T S  

SUBROUTINE OXM1X.XM.LLOW.LHIGH.IX.IXM.IL) 
D I M E N S I O N  X I I X )  . X M 1  I X M l r L L O W 1 I L ) v L H I G H 1 I L )  

C 
C D I V I D E   A C C O R D I N G  TO PRECHOSEN  SPL INE  JOINTS 
C 

C 
C 
C CHECK  THAT S P L I N E   J O I N T S  MATCH  THE  RANGE OF X 
C 

RETURN 

ENTRY O I V X M 1 X ~ X M v L L O W ~ L H I G H . N X I N S . N B 1 H )  

DEBUG ( X M I I ) v I = l q N B )  
300 DO 310 I = l . N B  

I F  (I.EQ.NB) GO TO 310 

2 1  
22 
2 3  
24  
25 
26 
27 
28 
29 
3 0  
31 

33 
32 

3 5  
34  

37 
3 6  

3 8  
39 
40 
41 
42 
43 
44 

46 
4 5  

4 8  
49 
5 0  
5 1  
52 
5 3  
54 
5 5  
56 
57  

5 9  
6 0  
6 1  
6 2  

47 

58  

1 
2 
3 
4 
5 
6 
7 
8 

10 
9 

11 
12 
1 3  
14 
1 5  
1 6  
17 
1 8  
19 
20 
2 1  
22 
23 
24  
2 5  

42 



I 1  = 1+1 
DO 305 J = I I , N B  
I F  ( X M ( I ) . L E . X M ( J l )  GO  TO 305 

X M I I )  = X M ( J )  
1 = X M ( I )  

X M ( J 1  = T 
305 CONTINUE 
310 CONTINUE 

C 
DEBUG I X M ( I ) * I = l . N B l  

311 DO 320 I = l , N B  
I F  (I.EO.NB) GO TO 320 
I F   ( X M I I ) . G E . X ( M + l ) )  GO TO 320 

DO 315 J = I I , N R  
I 1  = I + 1  

315 X M I J - 1 )  = X M ( J 1  
'46 = NE-1  
2 0  TO 311 

DEBUG NB, I X M I  I ) ,  I = l , N B )  

NS = N B + l  

I F   ( X M ( I ) . L T . X I N X ) )  GO  TO 330 
'4s = NS-1 

NB = NS-1 

DEBUG  NS, l X M ( I ) ,   I = l , N S )  
X M ( N S )  = X I N X I  

320 CONTINUE 

C 

DO 330 I = l , N B  

330 CONTINUE 

l. 

C DETERMINE LOW AND H I G H   I N D I C E S  
C 

L L O W ( l ) =  1 
K S T = 1  
DO 350 I = l . N S  
DO 340 K=KST.NX 
I F   l X M ( I ) . G T . X ( K ) )  GO TO 340 
L H I G H ( 1 )  = K - 1  

I F   l X M ( I ) . E Q . X l K ) )   L H I G H ( I ) = K  
IF(K.EQ.NX) GO TO 340 

L L O W ( I + l )  = L H I G H ( 1 )  
I F   f X M l I I . N E . X ( K I )   L L O W ( I + 1 ) = L H I G H l I ) + 1  
K S T =  K + 1  
G O  TO 350 

340 CONTINUE 
350 CONTIVUE 

L H I G H I N S )  = NX 
D E B U G   ( L L O W ( 1 ) .   I = l . N S )  
DEBUG I L H I G H ( I ) r I = l , N S )  

L 
C 
C 

C H E C K   F O R   S U F F I C I E N T   P O I N T S  I N  EACH  SUBSET 

I I = O  
D O  360 I = l . N S  
IF(LHIGHII)-LLOWlI)+l.GT.M) GO TO 360 
1 1 =  I 
b I R I T E ( 6 , l O )  I 

19 FORMAT ( l H O . 2 9 H I N S U F F I C  

C 
C 
C 

I F  ANY  SUBSETS ARE DEF 

I F ( I I . E Q . 0 )   R E T U R N  
NSS=  NS 

360 C ONT I NU E 

400 DO 470 I = l . N S S  
V P T S =  L H I G H ~  I i - L L o w ( I  )+I  

I F ( I . N E . 1 )  GO TO 410 
IF(NPTS.GT.M) GO TO 470 

L H I G H ( l ) =   L H I G H ( 2 )  
L H I G H ( 2 ) = 0  
L L O W ( Z ) = O  
X M l l ) =   X M l 2 )  

GO TO 480 
DEBUG I 

I E N T  PO 

I C I E N T ,  

I N T S  I N  SUBSET.15) 

COMBINE THEM WITH  OTHER  SUBSETS 

26 
27 
28 

30 
29 

3 1  
32 

34 
33 

35 
36 

38 
37 

40 
39 

41 
42 

44 
43 

45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

62 
6 1  

63 
64 

66 
65 

67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 

80 
79 

81  
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 

94 
93 

95 
96 
97 
98 
99 

43 



410 IFlI.NE.NSS) GO  TO 420 
LHIGHINSS-1) = NX 
LHIGHlNSS)=O 
LLOWlNSS)=O 

DEBUG 1 7 1  
XMlNSS-l)=  XINX) 

GO  TO  48b 
420 \]PLUS= LHIGHII+l)-LLOW(I+l)+l 

IF1NPLUS.GT.M) GO TO 430 
LHIGH(I)=  CHIGH(I+l) 
LHIGH(I+l)= 0 

XM(1 ) =  XM( 1+1) 
LLowlI+ll=o 

DEBUG  IpIvI 
$0 TO 480 

LHIGH(I-11=  LHIGHII-l)+NPZ 
I F  (NPZ*2.NE.LHIGH(I)-LLOWlI)+l) GO TO 460 

LHIGH( I )=O 
LLOW(I+l)=  LLOWlI+l)-NP2 
IF (LLUW(I+l).LT.LHIGHII-l)) LLOW(I+L)=LHIGH(I-l) 
LLOW ( I )  =o 
DERUG I v I * I t I  

VP2=  LLOWII+l) 
XH(I-l)=  X(NP2) 
DEBUG 1.111.1~1 
G O  TO 480 

450 YPZ=  LLOWf I+1) 
XM(I-l)= XlNP2) 
NPZ.;  LHItiH(  1-11 
XM(I-l)= .S+(XMII-l)+XlNP2)) 
DEBUG 1.1.11IvI.I 

430  YP2 = (LHIGH(I)-LLOW(I)+1)/2 

440 IF(LLnW(I+l).NE.LHIGH(I-l)) GO  TO  450 

G O  TO 480 

LHIGHlI)=O 
LLOWI I + 1 )  = LLOWI  I+l)-NPZ 
LLOW(I)=O 
GO  TO 440 

460 LHIGH(I-l)=  LHIGHII-l)+NPZ 

470 CONTINUE 
V S =  NSS 

C 
C tOMPACT  INDEX  AN0  SPLINE  JO 
C 

SETURN 

480 D O  500  I=lrNSS 
DERUG I.LLOW(I)*LHIGH(I) 

IINT ARRAYS 

IF lLL f lw l I ) .GT .D .AND.LHIGH( I ) .GT .O)  ti0 
1 1 =  I 

DO 490 J=IIvNST 
NST = NSS-1 

LLOW(J)=  LLOWlJ+l) 
LHIGH(J)=  LHIGH(J+l) 
XM(J)=  XM(J+l) 

vss=  N S S - 1  
DEBUG  NSS 
DEBUG ILLflW(J)pJ=lvNSS) 
DEBUG  ILHIGHlJ)pJ=lvNSS) 
DEBUG (XM(J).J=l.NSS) 

490 CONTINUE 

GO T O  400 
500 CONTINUE 

NS = NSS 
DEBUG  (XMII)vI=l.NS) 
DEBUG lLHIGH(I).I=lrNS) 
DEBUG  (LLOW ( I )  p I = l  vNS) 

C 

END 
RETURN 

AND CHECK  AGhIN 

TO500 

100 
101 
102 
103 
104 
105 
106 
107 
108 

110 
109 

112 
111 

113 
114 

116 
115 

117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 

150 
149 

151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 

44 



S I B F T C  DVNS 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 
C 

5 0 0  
5 1 0  

5 1 1  

5 2 0  

C 
5 2 2  

610 

6 0 0  
10 

C 

PROGRAM V A R I A B L E S  
C C ~ . * * C C + + + * C C + * C  

Y S C R I T  - MAXIMUM NUMBER OF  SEGMENTS  BASED ON DEGREE  OF 
POLYNOMIAL AND  NUMBER  OF  DATA  POINTS 

NPLFT - NUMBER OF POINTS  THAT  HAVE NOT BEEN  ASSIGVED TO A 
NS - SMALLEST OF  THE  THREE  POSSIBLE NUMBER  OF  SEGMENTS 

NSLFT - NUMBER OF AVAILABLE  SUBSETS 
SUBSET 

I - SUBSET  INDEX 
NPTS - NUMBER OF POINTS  THAT WILL BE I N  THE I(TH) SUBSET 

L I M  - D I M E N S I O N  OF ARRAYS  LLOW AND L H I G H   I N   M A I Y  PROGRAM 

S U B R O U r I N E   D N S ( X , X M , L L O W , L H I G H I I X I I X H ~ I L )  
D I M E N S I O N   X ( I X l . X M (   I X M ) . L L O W ( I L ) . L H I G H ( I L )  
G O  TO 6 1 0  

D I V I D E  ACCORDING TO PREDETtRMINED NlJMRER  OF SEGMENTS 

ENTRY D I V N S ( X * X M I L L O W . L H I G H ~ N X , N S . N B . M . I L L )  
I F  tNS. fQ.0)  GO  TO 6 0 0  

3NE SEGMENT REQUIRES  SPECIAL  HANDLING 

I F  (NS.NE.1) GO TO 500 
L L O W ( 1 )  = 1 
L H I G H ( 1 )  = NX 
NB = 0 
RETURN 

MORE THAN ONE SEGMENT  MEANS D I V I D I N G  THE  DATA AS EVENLY  AS 
P O S S I B L E  AMONG THE SEGMENTS 

N S C R I T  = ( N X - l ) / M  
Y S  = M I N O ( N S , N S C R I T , L I M )  

N P L F T  = NX 
NSLFT = NS 
NN = NS-1  

D O  5 2 0  I = l , N N  
L L O W ( 1 )  = 1 

VPTS = N P L F T / N S L F T + l  
NSLFT = N S L F T - 1  
MPLFT = N P L F T - N P T S + l  
L H I G H (  I )  = LLDW ( I ) + N P T S - l  
I F  ( 1 . L T . N S I   L L O W ( I + l )   = L H I G H ( I l  
MPTS  =LHIGH(  1 )  
X M ( 1 )  = X t N P T S )  
CONTINUE 
L H I G H ( N S )  = NX 
X M ( N S I  = X ( N X )  
NB  sNS-1  

DEBUG  NS.NSCRITvLIM 

DERUG NSvNB 
OEBUG(LLOW( I )  . I = l . N S )  
DEBUG ( C H I G H ( I ) , I = l , N S )  

RETURN 
DEBUG ( X M (  I I , I = l . N S l  

FORMAT  (1HOI15HNS = 0 I N   O I V N S )  
RETURN 
END 

WRITE (6110)  

1 
2 
3 
4 
5 
6 

8 
7 

10 
9 

11 
1 2  
13 
14 
1 5  
1 6  
17  
1 8  
19 
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  

2 7  
2 6  

2 8  
2 9  
30 
3 1  
3 2  
3 3  
3 4  
3 5  
3 6  
3 7  
3 8  

4 0  
39 

4 1  
4 2  
4 3  
4 4  
4 5  
4 6  
47 
40 
49 
50 

5 2  
5 1  

5 3  
5 4  
5 5  
5 6  

5 8  
5 9  
60 
6 1  
62 
63  
64 

5 7  

45 



46 

SIBFTC  SPSHL 
SURROUTINE O S P L l X ~ X M ~ L L O W , L H I G H ~ I X ~ I X M ~ I L l  
D I M E N S I O N  X ~ I X l ~ X M ~ I X M l ~ L L O W l I L ~ ~ L H I G H ~ I L l  

C 
C S P E C I A L   D I V I S I O N   I N T O  SEGMENTS WHEN NUMBER OF P O I N T S  IS BETWEEN 
C M + l  AND 3 M  
C 

C 
C  YUMBER OF POINTS  LESS  THAN  2M+1  REQUIRES ONE SEGMEYT 
C 

RETURN 

ENTRY S P t S H L I X ~ X M ~ L L O W ~ L H I t i H ~ N X ~ N S ~ N B ~ M I  

100 I F  tNX.GT.2fMI  GO TO 2 0 3  
NS = 1 
NB = 0 
X M 1 1 1  = X ( N X 1  
L L O W I 1 )  = 
C H I G H ( 1 1  = 
RETURN 

2 0 3  NS = 2 
NB = 1 
G O  TO 1 1 . 2  

C 

C 

1 
NX 

3 1  ,M 

1 0  FORMAT  11HOr13HM  CAhNOT  RE  11 
1 W R I T E  1 6 . 1 0 )  

CALL   EX IT  
r 
L 

C 
C 

M = 2  

z L L O W I 1 )  = 1 
L L O W ( 2 )  = 3 
L H I G H ( 2 1  = NX 
X M l 2 1  = X I N X I  
I F  lNX.GT.5) 
XM111 = X I 3 1  
L H I G H ( 1 1  = 3 
RETURN 

C 
2 1 0  X M l 1 )  = . 5 * l X (  

L H I G H ( 1 )  = 4 
RETURN 

C 
C 
C 

M = 3  

3 L L O W l 1 1  = 1 

L H I G H I Z )  = NX 
X M l 2 )  = X I N X I  

GO TO 2 1 0  

3 ) + X 1 4 1 1  

I F  lNX.GT.81 GO TO 3 1 0  
I F  (NX.GT.71 GO  TO 3 0 0  
XM111 = X I 4 1  

L H I G H ( 1 1  = 4 
L L O W ( 2 1  = 4 

P.ETURN 
C 

305  XM111 = . S * ( X l 4 ) + X 1 5 ) 1  
L L O W I Z I  = 5 
L H I G H ( 1 1  = 4 
RETURN 

3 1 0   L L f l W l 2 1  = 5 
C 

L H I G H I l I  = 5 
XM111 = X ( 5 1  

END 
RETURN 

2 
1 

3 
4 
5 
6 
7 
8 

10 
9 

11 
1 2  
1 3  
1 4  
1 5  
1 6  
17 
1 8  
19  
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
2 8  
2 9  
3@ 
3 1  
3 2  
3 3  

3 5  
3 4  

3 6  
3 7  
3 8  
3 9  
4 0  
4 1  

4 3  
4 2  

4 5  
4 4  

4 6  
4 7  
4 0  
4 9  

5 1  
5 0  

5 2  
5 3  
5 4  
55 

5 7  
5 6  

5 8  
5 9  
6 0  
6 1  
6 2  
6 3  
6 4  



SIBFTC  FFLW 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 

C 
C 
C 

C 

C 
C 

C 
700 

713 

720 

PROGRAM V A R I A B L E S  
* *  * . . . * * * * * * C * + + +  

NN - T R I A L  NUMBER OF  SEGMENTS 
NS - NEW SEGMENT  COUNTER 
IO - I N O E X   O F   F I R S T   P O I N T   U S E 0  TO DETERMINE  LAGRANGE 

I 1  - INDEX OF  SECOND  POINT 
I 2  - INDEX O F   T H I R D   P O I N T  - L A S T   P O I N T   F O R  A PUAORATIC 
I 3  - INDEX OF L A S T   P O I N T  FOR C U B I C  

POLYNOMIAL 

NST - INOEX  OF  F IRST  POINT  TO  BE  TESTED 
it.**+* 

A *  
B * -  INTERMEDIATE  VALUES  TO  S IMPLIFY  COOING OF  THE 
C + LAGRANGE  POLYNOMIAL 
o *  

Y J  - Y AT X I J )  EVALUATED  BY THE LAGRANGE  POLYNOMIAL 
**+.*** 

SUBROUTINE O L ( X . Y ~ X M . L L O W . L H I G H . I X . I X M . I L )  
D I M E N S I O N  X l I X ~ ~ Y ~ I X l ~ X M l I X M ~ ~ L L O W l I L ~ ~ L H I G H l I L ~  
RETURN 

DETERMINE  SUBSETS  BY  FORCE F I l T I N G   S T A R T I N G  AT LOW EN0 OF OAT4 

I iNTRY FFLOWlXvYvXM,LLOW.LHIGH.NX1NS.NB.M1TOL)  

JJ  = 1 
NN = NS 
N S  = 0 
D O  710 I = l , N N  
LLOWI  I )  = 0 
L H I G H I I  I = 0 
CONTINUE 
L L O W ( l ) =  1 
D O  750 N = l v N N  

NS = N S + 1  
IO = JJ 

I1  = IO+1 
I 2  = IO+2  
I3 = I0+3 
YST = I O t M + l  
DEBUG N S v N S T . I O v X ( I 0 )  
I F  1NST.GT.NX-M) GO TO 760 
L H I G H ( N 1  = NST-1  
00  740 J=NST.NX 

A = (XlJ)-X(IO))/(XlI2)-X(Il~) 
JJ = J-1 

B = l X ~ J ~ - X ~ I l ~ ~ / l X ~ I 2 ~ - X ~ I O ~ ~  
C = l X l J ~ - X l I 2 ~ ~ / ~ X ~ I 1 ~ - X o )  
I F  (M.EQ.3) GO TO 720 
Y J  = Y l I O ~ ~ B ~ C - Y ~ I l ~ * C * A + Y I I 2 ~ * A * B  

GO TO 730 
DERUG A v B . C . Y J v Y ( J ) v X I J I  

730 

731 

740 
735 
750 
760 

C 
C 

DEBUG A v B v C v O v X ( J ) r Y l J ) v Y J  
I F  (Y(J).EO.O.) GO TO 731 

L H I G H ( N )  = J 
I F  I A R S ( l . - Y J / Y ( J ) ) . G T . T D L )  GO TO 735 

GO TO 140 

L H I G H l N ) =  J 
I F  ( A B S ( Y J - Y I J ) ) . G T . T O L )  GO TO 735 

CONTINUE 

CONTINUE 
I F  1N.NE.NN) L L O W l N + l ) = L H I G H l N l  

L H I G H I N S )  = NX 

S E L E C T   S P L I N E   J O I N T S  

2 
1 

3 
4 
5 
6 
7 
8 

10 
9 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2 1  

23 
2 2  

24 
25 
26 
27 
28 
29 
3 0  
3 1  

33 
32 

34 
35 
36 
37 
38 
39 
40 
41 
42 
4 3  
44 
45 
46 
47 
48 
49 
50 
5 1  
5 2  
5 3  
54 
55 
56 
57 
58 
59 
60 
61 

6 3  
62 

6 4  
65 
66 
67 

69 
68 

71 
70 

72 

47 



C 
NB = NS-1  
DO 910 I = l , N S  
L L =   L H I G H I  I) 

910 X M l I ) =  X t L L )  
DEBUG N B v N S s I X M ( I ) v I = l . N S )  
DEBUG  (LLOW I I I t  I = l ,  NS 1 
DEBUG ( L H I G H I  I )  I I = l . N S )  

C 
RETURN 
END 

S IBFTC  FFHGH 
C 
C 

C 
C 

C 
C 
C 
C 
C 
C 
C 
C 

PROGRAM V A R I A B L E S  
C * t t t t t C C * * t + + + C t  

NSTRL - T R I A L  NUMBER OF  SEGMENTS 
NS - NEW SEGMENT  COUNTER 

NPLFT - NUMBER  OF POINTS  LEFT  THAT  HAVE NOT BEEN  ASSIGNED 

N - INDEX OF HIGHEST  POINT  USED FOR  LAGRANGE  POLYNOMIAL 
TO A SUBSET 

N l  - INDEX OF  SECOND  HIGHEST  POINT 
N 2  - INDEX OF  THIRD  HIGHEST  POINT - LOWEST P O I Y T  FOR QUADRATIC 
N 3  - INDEX OF LOWEST  POINT FOR C U B I C  
NM - I N D E X  OF  F IRST  POINT  TO 8 t  TESTED 

C t t . * * t  

A *  
R t- INTERMECIATE  VALUES TO S I M P L I F Y   C O D I N G  OF THE 
C + LAGRANGF  POLYNOMIAL 
D +  

Y J  - Y AT X I J )  EVALUATED BY  LAGRANGE  POLYNOMIAL 
t t t t t i t  

SUBROUTINE D H I X ~ Y ~ X M ~ L L O W ~ L H I G H ~ I X ~ I X M ~ I L )  
D I M E N S I O N   X I I X )  t Y (  1 x 1   s X M l I X M ) . L L O W ( I L ) .   L H I G H I  I L )  
RETURN 

C 
C DETERMINE  SUBSETS B Y  FORCE F I T T I N G   S T A R T I N G  AT H I G H  END OF DATA 
C 

ENTRY FFHIGHlXvYvXM,LLOW,LHIGH~NX,NS,NBvM,TOL) 

GO TO 8 7 0  

NSTQL = NS 
NN = NS 
NS = 0 

8 O i )  NPLFT = NX 
DEBUG  WPLFT,NSTRL 
00 8 1 0   I = l , N S T R L  
L H I G H I  I ) =  0 

L H I G H ( N N ) =  NX 

I F  1NPLFT.LE.M) 

NS = N S + 1  

N = NPLFT 
N 1  = N - 1  
'42 = N-2  
N 3  = N-3 
NM = N3-M+2 
NPLFT = NPLFT-M 
DEBUG  I .NvNl,N2,N3rNM 
DO 8 5 0   J = l v N M  
JJ  = N M - J + l  
I F  l J .EQ.1)   LLOWI I 1  )=JJ 

I F  ( M . E Q . 3 )  GO T O  8 3 0  

8 1 0   L L O W ( I ) =  0 

D O  8 6 0   I = l , N N  

8 2 0  I I = N S T R L - I + l  

DEBUG I , I I , N S , N P L F T  

DEBUG J . J J . X l J J ) . Y ( J J )  

74 
73 

7 5  
7 6  
77 

79 
7 8  

8 0  

8 2  
8 1  

83  

1 
2 
3 
4 
5 
6 
7 

9 
8 

1 0  
11 
1 2  
13 
14 
1 5  
1 6  
17 
1 8  
19 
2 0  
2 1  

2 3  
2 2  

2 4  
2 5  
2 6  
2 7  

2 9  
2 8  

3 1  
3 0  

3 2  

3 4  
3 3  

3 5  
3 6  
37 
3 8  
39 
40 
4 1  
4 2  
4 3  
44 
4 5  
4 6  
47 
4 8  
49 
5 0  
5 1  
5 2  
5 3  
5 4  
5 5  



L L O W ( I 1 )  = JJ 
GO TO 8 5 0  

L L O W ( I 1  ) =  JJ 
E 4 1   I F   ( A E S l Y J - Y l J J ) ) . G T . T O L )  GO 

E 5 0   N P L F T  = NPLFT-1  
8 5 9   I F   l I I . N E . 1 )   L H I G b (   I I - l ) = L L O W  
8 6 0   C O N T I N U E  

8 7 9   L L O W ( I 1 )  = 1 
C 

D E B U G   ( L L O W ( I ) ,   I = l , N S T R L )  
OERUG I L H I G H ( I ) . I = l . N S T R L )  
D O  8 8 0  I = I I  ,NSTRL 

L L O W I   I J ) =   L L O W I  I )  
I J  = I - I I + l  

L H I G H ( I J ) =   L H I G H ( 1 )  
J J =   L H I G H ( 1 J )  
X M l I J ) =  X ( J J )  

880 CONT I W E  
YB=  NS-1 
DEBUG ( X M ( I ) , I = l , N S )  
D F B U G l L L O W l I ) . I = 1 , N S )  
DEBUG ( L H I G H l I ) * I = l r N S )  

C 
RETURN 
END 

S I E F T C   R E F T  
r 

TO 8 5 9  

( 1 1 )  

1. 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 

PROGRAM VARIAAL  ES 
+*I.t++.t+*C*.++* 

NST - NUMBER OF THE SUBSET FROM WHICH  POINTS ARE B E I N G  

NSS - NEW SUBSET  COUNTER 

A A  + 

CC Y = AA + RE+X + CC+X++2 + DO*X++3 
OD + I I F  M=2, CD=O.I 

CHECKED 

**++t+t 

OB *- C O E F F I C I E N T S  FOR TESTING  POLYNOMIAL,  

t*+*.t, 

Y I  - Y EVALUATED  AT X ( 1 )  BY  TESTING  POLYNOMIAL 
Y J  - Y EVALUATED  BY  CIIEFFIENTS  FOR  SEGMENT NST 
NS - NUMBER OF  SEGMENTS I N   F I R S T  F I T  

I - I N D t X   O F   P @ I N T   B E I N G   T E S T E D  

SUBROUTINE R F T ( X . A ~ X M , L L O W ~ L H I G H ~ I X ~ I A ~ I X M ~ I M l )  
D I M E N S I O N   X ( I X ) .  A ~ I A ~ I M l ~ ~ X M ~ I X M ~ + L L O ~ I I A ~ ~ L H I G H I I 4 ~  
DOUBLE  PRECISION  ASPA, EE,CC,OD 
GO TO 140 

CHECK I F  DATA  SHOULD BE R E F I T T E D  AND  DETERMINE NEW SUBSETS 
r 
L 

ENTRY R E F I T ( X , A I X M . L L O W . L H I G H . N X ~ N S . N S S . H ~ T D L )  
DEBUG l L L O W I I ) , I = l , N S )  

5 6  
57 
58  
59 
60 
6 1  
62 
63 
64 
6 5  
66 
67 
68 
69 
70 
71 
7 2  
73 
74 
7 5  
7 6  
7 1  
78 

8 0  
E 1  
8 2  

E 4  
E3  

8 5  
E 6  
87 
8 8  
89 
90 
9 1  
9 2  

9 4  
9 3  

9 5  
96 

7 9  

2 
1 

3 
4 
5 

7 
6 

8 
9 

10 
11 
12 
13 
14 
1 5  
16 
17 
L E  
19 
2 0  
2 1  
22 
2 3  
2 4  
2 5  
26 
27  

49 



DEBUG ( L H I G H ( I ) r I = l . N S )  
N S T = 2  
N S S = l  
I S T =   L H I G H ( 1 ) + 1  

r 
I. 

100 DO 130 I =  IST ,   NX 
I F ( X ( I ) . G T . X M l N S T ) l   N S T =   N S T + 1  
Y I =  A A + X ( I ) * ( B B + X I I ) c ( C C + D D + X o ) )  
Y J =   A I N S T r M + l )  
D O  110 J = l r M  

Y J =   Y J * X l I ) + A l N S T , I J )  
I J =   M - J + l  

110 CONTINUE 
DEBUG  NSSI  NSTr I r Y I v Y J  
I F  (YI.NE.0.) GO TO 120  

GO TO 125 
I F  ( A R S ( Y I - Y J ) . L E . A @ S ( T O L ) )  GO TO 130 

120 I F  l A R S l 1 . - Y J / Y I ) . L E . A B S l T O L ) )  GO TO 1 3 0  
C 
C END OF NSS  SUBSET 
C 

1 2 5   L H I G H l N S S ) =   1 - 1  
I F  (NSS.NE.NS) L L O W I N S S + l ) = I - l  
I S T =   I + M  
I F  (IST.GT.NX) GO TO 135 
NSS=  NSS+1 

BB=  A(NST,Z)  
AA= A I N S T r 1 )  

L C =   A ( N S T . 3 )  
I F ( M . F P . 3 )   D D = A ( N S T r 4 )  
DEBUG  1rNSS.NSTrAA.BBrCCrDD 
G O  TO 100 

130  TOL = - A B S ( T O L )  
1 3 5  L H I G H ( N S S 1  = NX 

DEBUG ( L L O W ( I ) . I = l e N S S )  
DEBUG ( L H I G H ( I ) r I = l ~ N S S )  

L 
140 RETURN 

END 

S I B F T C   M I N V  
L 
C PROGRAM V A R I A B L E S  
C ti~.t.+f.l~ttt+.+ 

L 
C 
C 

A I N  - 
C 

NN - 
DET - 

C ERR - 
C 
C A -  
C 
C JND - 

N -  

C AK - 
C 
C ERR1 - 
L 
C 
C 

MATRIX TO eE INVERTED 
ORDER OF A I N  
VALUES OF THE  DETERMINANT 
MAXIMUM D E V I A T I O N  OF ELEMFNTS OF A I N + A I N l I N V E R S E )  

WORKING  MATRIX 
NUMBER CF ROWS I N  WORKING  MATRIX 
NUMBER  OF  COLUMNS I N  WORKING M A T R I X  
VALUE  OF  THE  FIRST  ELEMENT I N  P I V O T A L  ROW 

SCALAR  PRODUCT OF I ( T H l  ROW OF A I N  AND J I T H )  COLUMN 
FROM U N I T   M A T R I X  

OF A I N ( I N V E R S E 1 .  ALSO,  THE D E V I A T I O N  OF THE I s J ( T H )  
ELEMENT FROM U N I T   M A T R I X  

C M A T R I X   I N V E R S I O N   B Y   G A U S S I A N   E L I M I N A T I O N  
C 

SUBROUTINE  MINVRT(A INrNN.DETrERR)  
DOUBLE  PRECIS ION AINIA.AKIDETIERR.ERRI 
D I M E N S I O N   A I N I 4 , 4 ) & ( 4 , 8 )  

2 8  
29 
30 

3 2  
3 1  

3 4  
3 3  

3 5  
3 6  

3 8  
37  

3 9  
4 0  
4 1  
42  

4 4  
4 3  

4 5  
4 6  
4 7  
48  
4 9  
50  
5 1  
5 2  
53 
5 4  
55 
5 6  
57  
5 8  
5 9  
6 0  
6 1  
6 2  
63 
64 
6 5  
6 6  
6 7  
68  

7 0  
6 9  

7 1  
7 2  

1 
2 
3 
4 
5 
6 
7 
8 

10 
9 

11 
12  
1 3  
14 
1 5  

1 7  
16 

1 8  

20 
19 

21 
2 2  
23 

50 



C 
C 
C 

T R A N S F E R   I N P U T   M A T R I X   ( A I N )  TO WORKING  ARRAY ( A )  AND F I L L  

C 
REMAINDER OF  WORKING  ARRAY  WITH U N I T   M A T R I X  

N= NN 
JND= 2.N 
DO 110 I z 1 . N  
DO 100 J = l t N  
A ( I r J ) =  A I N ( I t J 1  
J N =   J + N  
A (  I s  J N ) =  0.00 
I F ( 1 . E Q . J )   A ( I t J N ) =  1.DO 

100 CONTINUE 

110 CONTINUE 
DEBUG ( A ( 1 t J ) t  J - l r J N D I  

L 
C CALCULATE  DETERMINANT  AND  ELIMINATE  THE .BELOW THE  DIAGONAL. 

C 
C ELEMENTS  OF  LEFT S I D E  OF A 

D E 1  = 1.D0, 
00 230 I = l . N  
D E 1  = D E T I A ( I . 1 )  
I F  ( A ( I . I ) . E Q . O . O O ~  GO TO 600 
J S T  = I 

DO 200 J =  JST,   JND 
AK = A ( 1 t I )  

200 A ( I t J ) =  A ( I t J ) / A K  
DEBUG I r ( A ( I t J ) t J = l r J N D )  
I F ( 1 . E P . N )  GO TO 3CO 
K S T =  1+1 
DO 220 K = K S T r N  
AK= A ( K t I )  
DO 210  J= J S T t   J N D  

210 A ( K t J I =   A ( K . J )   - A ( I , J ) * A K  
DEBUG K t   I A l K t J  1 r J = l t  J N D )  

220 CONTINUE 
230 CONTINUE 

C 
DEBUG D E 1  

C 
C 

EL IMINATE  THE  ABOVE  THE  D IAGONAL  ELEMENTS  OF  LEFT S I D E  OF A 

3 0 0  DO 3 3 0  I=2tN 
KND= 1-1  
DO 320 K = l r K N D  
AK= A ( K r I )  
J ST= I 
D O  310 J= J S T t   J N D  
A ( K p J ) =   A ( K . J ) - A ( I . J ) * A K  

3 1 0   C O N T I N U E  

320 CON1 I NU  E 
330 CONTINUE 

DERUG K t ( A ( K t J ) r J = l t J N D l  

C 
C I N V E R S E  I S  I N   R I G H T   S I D E  OF A. M U L T I P L Y   I N P U T   M A T R I X   B Y  
C 
C 

THE  INVERSE AND F I N D  THE  MAXIMUM  DEVIATION OF ELEMENTS 
OF THE  PRODUCT  MATRIX  FROM  THE U N I T   M A T R I X  

C 
ERR= O.DO 

DERUG N r ( A ( N t J ) r J = l r J N D )  

DO 420 I z 1 . N  
DO 410 J = l r N  

E R R l =  0.00 
J N =   J + N  

400 ERR1= E R R l * A I N ( I r K ) * A ( K t J N )  
DO 400 K = l . N  

ERR1=  DABS(   ERRl  1 
IF (J .EQ.1)   ERR1=  .ERRl - l .DO 
IF(ERR1.GT.ERR) ERR= E R R l  
DEBUG I t J r E R R t E R R l  

410 CONTINUE 
420 CONTINUE 

C 
C TRANSFER  INVERSE TO I N P U T  ARRAY 

24 
2 5  
26 
27 
28 
29 
30 
31 
32 
33 
34 

36 
35 

38 
37 

40 
39 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
5 1  
5 2  
5 3  
54 
5 5  
56 
57 
58 
59 
60 

62 
61 

63 
64 
65 
66 
67 
6 8  
69 
70 
71 
72 
73 
7 4  
75 
76 
77 
78 
79 
80 
8 1  
82 

84 
83 

85 
86 

88  
87 

90 
89 

91 
92 
93 
94 
95 
96 

51 



C 

D O  5 0 0  J = l t N  
DO 5 1 0  I = l r N  

JN=   J+N 
A I N l I . J l =   A I I V J N )  

500 CONTINUE 
5 1 0   C O N T I N U E  

RETURN 
C 
C FOR SINGULAR  MATRIX.   RETURN  NULL  MATRIX 

600 D O  6 2 0  I = l r N  
DO 6 1 0  J’1.N 

610 A ( I , J ) =  0 - D O  
6 2 0   C O N T I N U E  

RETURN 

END 
C 

C 
S IBFTC  %ATDEF 

C 
C 

PROGRAM V A R I A B L E S  
*+.*+*+********** 

l, 

C  T - ONE BLOCK OF MATRIX  PRODUCT  X-TRANSPOSE *W+X 
C 
C 

TT - POWER OF X I 1 1   I N   F O R M A T I O N  OF T 

C ERR - VALUE  THAT  MEASURES  ACCURACY  OF  T-INVERSE 
DET - DETERMINANT OF T 

L 
SUBROUTINE D E F ( X X ~ Y Y ~ W ~ X M ~ L L O W ~ L H I G H , X W X . Y W X , ~ ~ I X ~ ~ X M I I L ~ I M ~ ~ I M ~  

1 I N 1 1  

1 Y W X l I L ~ I M l ~ ~ X W X l I L ~ I M l r I M 1 ) . C ( I N l ~ I M ~ I M l l ~ T ~ 4 ~ 4 ~  
D I M E N S I O N  X X l I X l ~ Y Y ~ I X l ~ W ~ I X l ~ X M l I X M l ~ L L U W ~ I L ~ ~ L H I G H l I L I ~  

DOUBLE  PRECISION YWX.XWXICIT.TT~DETIERR 

C 
G O  TO 400 

C 
C 

D E F I N E  THREE  MULTIDIMENSIONAL  MATRICES  REQUIRED FOR SOLUTION 
OF  VECTOR  A-TRANSPOSE 

C 

C 
C DEFINE  MATRIX  OF  CONSTRAINTS I F  THERE IS MORE THAN ONE SEGMENT 
C 

ENTRY D E F M A T l X X . Y Y . W . X M . L L O W s L H I G H ~ N X * N S s M * X H X * Y H X * C )  

100 NN = Y S - 1  
M l  = M + 1  
M M  = M 
I F  lNS.EQ.1) G O  TO 200 
DO 1 2 0   N = l r N N  

l, 

C 
C 

F I R S T  KDH 

C ( N v l r l 1  = 1.DD 
DO 110 K=Z.Ml  

C 
C SECCND ROW 
C 

1 1 3   C ( N e 1 . K )  = C ( N . l . K - l ) * X M I N l  

C ( N . 2 1 1 )  = 0.DO 
C ( N I 2 . 2 )  = 1.00 
C(N.2.31 = 2.0O*XM(N) 
I F  lMM.EQ.2) GO TO 1 2 0  
C I N . 2 ~ 4 1  = 3 .DO*XMlNl+*2  

r 

97 
98 

100 
99 

10 1 
102 
103 
104 
10 5 
106 
107 
108 
109 
110 
111 
1 1 2  
113 
114 

1 
2 
3 
4 
5 
6 
7 

9 
8 

11 
10 

1 2  
13  
1 4  
1 5  
16 
17 

19 
1 8  

2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
2 8  
2 9  
30 
3 1  
3 2  
33 
34 

36 
3 5  

3 7  
3 8  
39 
40 
4 1  
4 2  
43 
44 
4 5  
4 6  
47 
4 8  
49 

52 



120 LONTINUE 
DO 130 N = l , N N  
DEBUG N 
DO 130 J = l r M M  
DEBUG J r I C l N v J r K ) r K = l r M L )  

135 CONTINUE 
C 
C D E F I N E   M A T R I X  X W X  AND VECTOR YWX 

203  NN = NS 
D O  300 N=l .NN 
KST=  LLOWIN)  
KNO+ L H I G H I N )  
DEBUG  KSTvKNO 

T l 1 , J )  = 0.00 
D O  2 1 0   J = L I M l  

T I J , M l )  = 0.00 

DO 240 K=KST.KND 
TT  = W I K )  

210 YWX(N,J) = 0 - D O  

D O  2 2 0  J - l r M l  
T l l r J )  = T I l , J ) + T T  
YWXIN.J)  = Y W X l N , J ) t T T + Y Y l K )  

220 T T  = T T + X X l K )  

T I 1 , M l l  = T l I , M l ) + T T  
T T  = T T * X X l K )  

00 2 3 0   I = 2 t M 1  

2 3 0   C O N T I N U E  
2 4 0   C O N T I N U E  

C 
D O  2 7 0  I = Z , M l  
D O  260 J = l . M M  

260 T I I I J )  = T I I - l , J + l )  
2 7 5   C O N T i N U E  

DEBUG N 
D O  2 7 1  I~ltMl 
DEBUG I p I T ( I s J ) r J = l r M l )  

2 7 1  CONTINUE 

C 
DEBUG l Y W X I N r I l r I = 1 t M l )  

C A L L   M I N V R T l T * M l r D E T * E R R )  
DEBUG OETt ERR 
DO 2 9 0   I = l r M l  
DEBUG I ~ l T l I ~ J ~ ~ J ~ l r M l ~  
DO 2 9 0   J = l , M L  
XWX1Nv I . J )  = T 1 I . J )  

290 CONTINUE 
300 CONTINUE 

4QC  RETURN 
END 

C 

S I B F T C   A S L V  
L 
C PROGRAM V A R I A B L E S  
C t C + C t t t * . . t t i C t . .  

C B -  
C N -  
C L -  
C 
C 

I -  

C S I G N  - J -  

C T T  - 
C T -  
C 
C 

R I N V  - 
C 

E -  

C 
DELTA - 

TS - 
C 

MATRIX  PRODUCT C * l X - T R A N S P O S E * W * X ) + C - T R A N S P O S E  
ROW INOEX OF SUBMATRICES  OF B 
COLUMN INDEX  OF  SUBMATRICES OF t) IL=1,2,3l 
ROW INOEX OF ELEMENTS OF THE  SUBMATRICES  B1N.L)  
COLUMN INDEX  OF  ELEMENTS  OF  THE  SUBMATRfCES  BlN,L)  
PLUS OR MINUS 1 - CHANGES  SIGV OF MATRIX  PRODUCT 
I N T E R M E D I A T E   M A T R I X  I N  T H E   D O U B L E   M U L T I P L I C A T I O N  
I N T E R M E D I A T E   M A T R I X   I N   T H E   D O U B L E   M U L T I P L I C A T I O N  
INVERSE OF 6 

MATRIX  DELTA FROM 5OLUTION FOR B- INVERSE 
MATRIX E FROM SOLUTION FOR B- INVERSE I N  APPENDIX 8 

INTERMEDIATE VALUE  RFLATED TO THE  IDENTITY  SUBMATRICES 
OF  APPENDIX B 

50 
5 1  
5 2  
53 
54 
55 
5 6  

58  
57 

59 
60 
6 1  
62 
63 
64 
65 
66 
67 
68 
69 
70 
7 1  
7 2  
73 
74 
7 5  
7 6  
77 
78 
79 
BO 

8 2  
8 1  

8.3 
84 
8 5  
86 
87 
68 
89 
90 
91 
9 2  
93 

9 5  
94 

9 6  
97 
9 8  
99  

100 

1 
2 
3 
4 
5 
6 
7 
8 

10 
9 

11 
12 
13 
14 
15 
16 

53 

I 



C 
C 
C 

V - VECTOR V O F  APPENDIX 8 
V V  - VECTOR V V  OF APPENDIX 8 

SUBROUTINE S L V ( C I X W X ~ Y W X , A I B I B I N V ~ I C , I M ~ I H ~ ~ I L  
D I M E N S I O N  C~IC.IM.IPl)rXWXIILrIMl~IMl~rYWX(IL. 

1 B ( I C ~ I M ~ I M I I M ) ~ B I N V ( I C ~ I C ~ I M I M )  
D I M E N S I O N  T I 4 r 4 l r T T I 4 . 4 ) . E l 4 . 4 ) r D E L T A ( 3 r 3 ) . V ( 4  
DOUBLE  PRECISION C ~ X W X I Y W X I A I ~ ~ B I N V I T ~ T T S ~ ~ O E L  

1 S I G N  
GO TO 9 4 0  

r 
L 

C 
C 

SOLVE  MATRIX  EOUATIUN  FOR  A-TRANSPOSE 

C 
C FOR ONE SEGMENT, DO A S I M P L E   L E A S T   S Q U A R E S   F I T  

GO TO 100 

ENTRY A S O L V E ( C I X ~ X , Y W X , A I N S . M )  

1 .VV(  4 )  
TAIVIVVITSIDETIDIVI 

C 
I F  fNS.GT.1) 
M 1  = M + l  
DO 9 5  I = l r M 1  
A ( 1 s  I )  = O.DO 
DO 9 0   K = l r M l  
AIlrI) = A I 1 9  

9 0  CONTINUE 
9 5  CONTINUE 

RETURN 
C 
C D E F I N E  R MATR 
C 

100 NN = NS-1 
M M  = M 
Ill = M + l  
D O  200 N = l r N N  
D O  190 L z 1 . 3  

I X  

N I N D  = I L - l ) / 2 + N  
GO TO 1 1 . 2 . 3 ) r L  

1 I F  IN.EQ.1) GO T O  1 9 0  
J I N D  = N-1  
GO TO 120 

2 S I G N  = 1.DG 
J I N D  = N 

C 

D O  110 I = l v M l  
DO 110 J = l . M l  
T ( 1 . J )  = X W X I N . I , J ) + X W X I N + l r I , J )  

110 CONTINUE 
GO T O  140 

C 
3 I F  1N.EQ.NN) GO TO 2 0 0  

1 2 0   S I G N  = -1.DO 
J I N D  = N + l  

D O  130 I = l r M l  
DO 1 3 0   J = l , M L  

1 3 0   C O N T I N U E  

1 4 0  D O  160 I = l , M l  

T I I v J )  = X W X ( N I N 0 . I . J )  

C 

DO 1 5 0   J = l . M M  
T T I I r J )  = 0.00 
DO 1 5 0   K = l . M l  

1 5 0   T T ( 1 . J )  = T T ( I I J ) + T I I I K ) ~ C ( J I N D I J I K )  
DEBUG I . ( T T I I . J ) . J = l r M M )  

1 6 0   C O N T I N U E  

DO 1 8 0   I = l , M M  
D O  1 7 5   J = l . M M  

DO 1 7 0   K = l r M 1  
B ( N I L I I , J )  = 0.DD 

1 7 0   B I N S L I I ~ J )  = B I N ~ L ~ I ~ J I + C ( N I I ~ K ) * T T ( K I J )  
1 7 5   8 I N . L . I . J )  = B ( N . L r   I . J ) * S I G N  
1 8 0   C O N T I N U E  
190   CONTINUE 
200   CONTINUE 

C 

1 7  
1 8  
19 

2 1  
2 0  

2 2  
2 3  

2 5  
2 4  

2 6  
2 7  
2 8  
2 9  
30 
31 

33 
3 2  

3 5  
34 

36 
3 7  
3 8  
3 9  
4 0  
4 1  
4 2  
4 3  
44 
4 5  
4 6  
4 7  
4 8  
49 
50 
5 1  
5 2  
5 3  
5 4  
55 
56 
5 7  
5 8  
5 9  
6 0  
6 1  
6 2  
6 3  

6 5  
6 4  

6 6  
6 7  
6 8  
69 
70 
71 
7 2  
7 3  
7 4  
7 5  
7 6  
17  
7 0  
79 
8 0  
8 1  
8 2  
8 3  

8 5  
8 4  

8 6  
8 7  
8 8  
8 9  
90 

54 

I 



3 7 9  

3 8 0  
390 
396 

4 0 0  
C 

4 1 0  
4 2 0  

C 

4 3 0  

4 4 0  
C 

C 
C 
C 

4 5 3  

5 0 0  

5 1 0  

C 
C 
C 

5 3 0  

5 4 0  

5 5 0  

5 6 0  

5 6 1  

5 6 2  

CONTINUE 

CONTINUE 

I F  (L.EQ.1) GO T O  4 5 0  
L =   L - 1  

CONTINUE 
GO T O  3 1 0  

C A R R Y  OUT MATRIX  MULTIPLICATIONS  FOR  A-TRANSPOSE 

DEBUG  L.N. ( B I N V ( L . N . I * J ) . J = l . M M )  

00 9 3 0   N = l r N S  

V ( L )  = YWX(N9L I  
D O  5 1 0   L = l . M l  

CONTINUE 
DEBUG N v ( V I L ) . L = l s M l )  
DO 8 5 0   J J = l . N S  

FORM MATRIX  D(JJ.N)   BY  4   SEPARATE  TECHNIQUES 

IF (N .NE.1 )  GO TO 5 5 0  
NDUM= 1 
I F ( J J . N E . 1 )  
JOUM= 1 
S I G N  = 1.00 
GO TO 5 7 0  
IF (JJ .NE.NS)  
JOUM=  NS-1 
S I G N  = -1.DO 
GO TO 5 7 0  
S IGN= l .OO 
G O  TO 6 3 0  
IF (N .NE.NS)  
NDUM= NS-1  
I F ( J J . N E . 1 )  

S I G N =  -1.00 
J DUM- 1 

GB TO 5 7 0  

JOUM=  NS-1 
IF (JJ .NE.NS)  

G O  TO 5 7 0  
S I G N  = 1.DO 

I F  ( JJ .NE.1 )  
JDUM = 1 

GO TO 6 1 5  
S I G N  = 1.00 

GO TO 5 3 0  

GO TO 5 4 0  

GO TO 5 6 1  

GO T O  5 6 0  

GO TO 5 6 3  

GO TO 5 6 2  

I F  IJJ.NE.NS) GO TO 6 8 0  
JDUH = NS-1 
S I G N  = -1.00 
GO TO 6 1 5  

1 6 4  
1 6 5  
1 6 6  

1 6 8  
1 6 7  

169 
1 7 0  
171 
1 7 2  
1 7 3  
174 
1 7 5  
176 
1 7 7  
1 7 6  
1 7 9  
1 8 0  
1 6 1  

1 8 3  
1 6 2  

1 8 4  
1 8 5  

1 8 7  
1 8 6  

186 
1 6 9  

191 
190 

1 9 2  
1 9 3  
1 9 4  
1 9 5  
1 9 6  
1 9 7  
1 9 6  

2 0 0  
199 

2 0 1  

2 0  3 
20  2 

2 0 5  
2 0 4  

2 0 6  
2 0 7  
2 0 8  
2 0 9  
2 1 0  
2 1 1  

2 1 3  
2 1 2  

2 1 5  
2 1 4  

2 1 6  
2 1 7  
2 1 8  
2 1 9  
2 2 0  
2 2 1  
2 2 2  
2 2 3  
2 2 4  
2 2 5  
2 2 6  
2 2 7  
2 2 6  
2 2 9  
2 3 0  
2 3 1  
2 3 2  

234 
2 3 3  

2 3 5  
2 3 6  
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C 
C 

2 1 0  

C 
2 2 0  

2 3 0  
2 4 0  

C 

2 5 0  

2 6 0  
2 6 5  

2   70  
C 

. .  
2 8 0   C O N T I N U E  

C 
D O  3 0 0  I = l . M M  
DO 2 9 0  J=l ,MM 

D O  2 9 0  K=l ,MM 
B I N V ( N N , N , I , J )  = 0.00 

2 9 0   B I N V ( N N . N . I r J ) =   B I N V ( N N . N , I * J I  + E ( I , K ) * D E L T A ( K s J I  
DEBUG NN,N, tB INV(NN.N. I .J11J= l r” )  

3 0 0   C O N T I N U E  
C 

3 1 0  

3 2 0  

3 3 0  

C 
3 4 0  

3 5 0  
3 6 0  

I F  (NN. ’EQ. l )  GO TO 500 

LAST = L 
L =  NN-1 

I F ( L L . N E . 1 )  GO TO 3 4 0  

DO 3 3 0   J = l , M M  

DO 3 9 6   L L = l r L A S T  

D O  3 3 0   I = l . M M  

D E L T A ( I , J ) =  0.DO 
E ( I , J )  = 8 ( 1 1 2 r I , J )  

I F ( L L . E Q . N . A N D . 1 . E Q . J )   D E L T A ( I , J ) =  1.DO 
CONT I NUE 
GO T O  3 9 0  

D O  3 6 0   I = l . M M  
DO 3 5 0   J = l , M M  
T ( I , J ) =  0.00 
T T ( I , J ) =  O . D O  
00 3 5 0   K = l . M M  
T ( I , J ) =  T ( I r J ) + E ( f , K ) + D E L T A ( K t J )  
T T ( I v J )  = TT(I,J)+E(I,K)+B(LL-1,3,K.J) 
CONTINUE 
DO 3 8 0   I = l , M M  
DO 3 8 0   J = l , M M  
D E L T A ( I , J ) =  O.DO 
E f I , J ) =  O.DO 

9 1  
9 2  
9 3  
9 4  
9 5  
9 6  
9 7  
9 8  

100 
9 9  

101 
102 
1 0 3  
1 0 4  

1 0 6  
1 0 5  

1 0 7  
1 0 8  
1 0 9  
110 
111 
1 1 2  
113 
1 1 4  
115 
1 1 6  
117 
1 1 8  
1 1 9  
1 2 0  
1 2 1  

1 2 3  
1 2 2  

1 2 4  
1 2 5  
1 2 6  
127  
1 2 8  
1 2 9  
1 3 0  
1 3 1  

1 3 3  
1 3 2  

135 
1 3 4  

1 3 7  
1 3 6  

1 3 8  
1 3 9  
1 4 0  
1 4 1  
1 4 2  
1 4 3  
1 4 4  
1 4 5  
1 4 6  
1 4 7  
1 4 8  
1 4 9  
1 5 0  
1 5 1  
1 5 2  
1 5 3  
154  
1 5 5  
1 5 6  
157 
1 5 8  
1 5 9  
1 6 0  
1 6 1  
1 6 2  
1 6 3  
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5 6 3   S I G N  = -1.00 
G O  TO 6 3 0  

C 
5 7 0  D O  5 9 0  I = l r M l  

DO 5 8 0  J = l . M M  

D O  5 8 0  K = l r M M  
T l I , J ) =  O.DO 

58C  CONTINUE 

5 9 0   C O N T I N U E  

T ( I , J I =  T l I ~ J ~ + C l J O U M ~ K ~ I ~ + B I N V l J O U M , K . J ~  

DEBUG ( T 1 I . J ) .  J = l v Y M )  

r 

I GN 

t M 1 )  

6 0 0   C O N T I N U E  

6 0 5   C O N T I N U E  

6 1 0   C O N T I N U E  

T T ( I , J ) =   T T l I * J l + S  

DEBUG l T T l I , J ) r J = l  

GO TO 8 0 0  
C 

6 1 5  DO 6 1 7   I = l r M M  
D O  6 1 6   J = l . M l  
T 1 I . J )  O.DO 
D O  6 1 6   K = l . M M  

T T 1 I . J )  = 
D O  6 1 8   K = l  
T T ( 1 . J )  = 

6 1 8   C O N T I N U E  

6 1 9   C O N T I N U E  

6 2 0   C O N T I N U E  

T T 1 I . J )  = 

DEBUG ( T T (  

G O  TO 8 0 0  
C 

6 3 0  D O  6 5 0  I = l . M l  
D O  6 4 0  J= l ,MM 

DO 6 4 0  K=l ,MM 
T ( I . J ) =  O.DO 

T 1 I . J )  = T ( I . J ) + C ( J J I K . I ~ ~ B I N V I J J ~ N D U M . K ~ J ) - C ( J J - ~ ~ K ~ I ) +  
1 B I N V I J J - l ~ N D U M ~ K ~ J )  

6 4 0   C O N T I N U E  
DEBUG ( T I I s J ) ,  J = l , C M )  

C 
6 5 0   C O N T I N U E  

D O  6 7 0   I = l . M 1  
DO 6 6 5  J=l,Ml 
T T I  I * , I ) =  O.DO 
D O  6 6 0   K = l . M M  
T T ( I I J ) =   T T ( I s J ) + T l I v K  

6 6 0   C O N T I N U E  

6 6 5   C O N T I N U E  

6 7 0   C O N T I N U E  

T T 1 I . J )  = T T l I . J ) + S I G N  

DEBUG ( T T I I s J ) ,  J = l . M l  

C 
GO TO 800 

6 8 0  D O  700 I = L * M l  
D O  6 9 0  J = l r M M  

2 3 7  
2 3 8  
2 3 9  
2 4 0  
2 4 1  
2 4 2  
2 4 3  
2 4 4  
2 4 5  
2 4 6  
2 4 7  
2 4 0  
2 4 9  

2 5  1 
2 5 0  

2 5 2  
2 5 3  
2 5 4  
2 5 5  

2 5 7  
2 5 6  

2 5 9  
2 5  8 

2 6 0  
2 6 1  

2 6 3  
2 6 2  

2 6 4  
2 6 5  

2 6 7  
2 6 6  

2 6 8  
2 6 9  
2 7 0  
2 7 1  
2 7 2  
2 7 3  
2 7 4  
2 7 5  
2 7 6  
2 7 7  - 
2 7 8  
2 7 9  
2 8 0  
2 8 1  
2 8 2  
2 8 3  
2 8 4  
2  85 

2 8 7  
2 8 6  

2 8 8  
2 8 9  
2 9 0  
2 9 1  
2 9 2  
2 9 3  
2 9 4  
2 9 5  
2 9 6  
2 9 7  
2 9 8  
2 9 9  
3 0 0  
3 0 1  
3 0 2  
3 0 3  
3 0 4  
305 
3 0 6  
3 0 7  
3 0 8  

3 1 0  
3 0 9  
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690  CONTINUE 

700 CONTINUE 
DEBUG (T(IrJ)rJ=lvMM) 

C 
D O  720 I = l v M l  
DO 710 J = l r M l  
TT(IrJ)= 0.DO 
DO 710 K = l r M M  
TT(IvJ)= TT(IrJ)+TlIrK)rC(N-lrK,J) 

710  CONTINUE 

720 CONTINUE 
DEBUG (TT(I.J)rJ=l.Cl) 

r 
L 

DO 740 I = l r M l  
DO 730 J = l r M M  

DO 730 K = l v M M  
T ( I v J ) =  0.00 

T(I,J) = T ( I ~ J ) + C ( J J I K , I ) . ~ I N V ( J J ~ N . K ~ J ) - C ( J J - ~ ~ K ~ I ) ~  
1 B I N V ( J J - l r N r K r J )  

730 CONTINUE 

740 CONT I N U  E 
DEBUG ( T ( I r J ) v J = l r M M J  

C 
D O  760 I = l r M l  
DO 750 J = l r M l  
DO 750 K=l.MM 
TTlIrJ)= TTlIvJ) + T(IrK)*C(NrKvJ) 

750 CONTINUE 

760 CONTINUE 
DEBUG ( T T I I r J ) v J = l r C l )  

C 
C M A T R I X  D(JJ.N)  IS STORE0 IN  TT 

800 D O  820 L = l r M l  
V V I L )  = 0.00 
D O  810 K = l r M l  
V V ( L )  = V V ( L ) + Y W X ( J J v K ) * X H X ( J J v K r L )  

810 CONTINUE 
8 2 0  CONTINUE 

DEBUG JJ, ( V V I L )  r L = l  t M 1  
D O  840 L = l r M l  
D O  830 K = l v M l  
V ( L )  = V(L)-VVlK)+TTlK 

84C CO N T I N U E  
833 CONTINUE 

850 CONTINUE 
DEBUG JJv(V(L),L=lrMl) 

C 
C F I N A L  MULTIPLICATION FOR A-TRANSPOSE 
r 
I. 

900 DO 920 I = l r M 1  
A ( N r 1 )  = G.DO 
D O  910 K = l v M 1  
A(N.1) = A ( N r I J + V I K ) + X W X ( N v K r I )  

929  CONTINUE 
910 CONTINUE 

DEBUG N 

930 CONTINUE 
DEBUG l A ( N r I ) r I = l v M l )  

r 
I. 

940 RE T U R N  
EN0 

311 
312 
313 

315 
314 

316 
317 
318 
319 
320 
321 
322 
323 
324 
32 5 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
330 
339 
340 
341 
342 

344 
343 

345 
346 
347 
348 
349 

351 
350 

352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
36 7 

369 
368 

370 
371 
372 



Subroutine TRANSF 
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Subrout ine ORDER 

Q 
I 

/Set  a l l   e lements  of   bookkeeping  array NBLANK to 11 

l ln i t ia l ize  ordered  po int  counte! NX  and  ordered  point   index] 

I [ Y e s  I ]Add  corresponding YT to SUMY  and WT to SUMWl 
I 
I 

lSet  NBLANK(J) = 0 for  dupl icated  X's] 
I 

]Search  new  array to f ind  proper  index  for   new XI 

Goes "in the  middle" X? 

Move  points  down 
to admit  new  X 

6 Return 



Subroutine SEGMNT 

Call  DIVNS 
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Subroutine DIVXM 

1Arrange-join;s i n  ascending order I 

Eliminate  any  spline 
joints  that da not  match 

I 
and high  indices of  each subset 1 
I 

Do all 

points? - 
NSS a numb;r of subsets] 

I = I + l  H Check Ith subset  again 

with the second 

bine the NSSth subset 
with  the (NSS - Uth 

Put lower  number of points i n  the (I - I)th. 
subset and  the  higher  number i n  the (I + l)th 

V r r a y s  and  spline  joint  array I 
I - NSS = NSS - 1 

62 

I 



Subrou t ine  DlVNS 

Q e+--- Er ro r   cond i t i on   Re tu rn  

Q1 I P U t W @  in one  subset 

I 

Choose  smallest of three  possible  values  for  NS: given NS, maximum 
possible  NS  based o n   n u m b e r   o f   p o i n t s   a n d  degree of polynomials, 

and  maximum  d imension of  index  ar rays 

" 

Initialize: 

1 Index  arrays to zero1 
1 

I NPTS = number  o f   po ints  in Ith subset  (includes  overlapping 

I 

T 
I Decrease NsLFlb;-;I 

I 
I Set Ith element in index  ar rays I 

I 

I = I + 1  

= NS 

I Set last  element in LHIGH to be  NX 

Set NB = NS - 1 

0 Retu rn  

6 3  



Subroutine SPESHL 

Error  condition Divide for polynomialsof degree  three]  

0 Return 
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Subrou t ine  FFLOW 

I J J - 1  
In i t ia l ize:  I 
Index  arrays to zero 

I 

Choose po in ts  to determ 

I Pick  index  o f   f i rs t   po int  to be tested  INST) I 
~~ 

I L N - N + l  Lr' J = NST 

YJ  -va lue  o f  Y from  Lagrange  polynomial 
Y IJ l  - i n p u t  value o f  Y 

I 

Increase  LHIGH(N)  by 11 

Q 
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I I 

Subroutine  FMIGH 

NSTRL = NS 
NN = NS 
NS - 0  
NPLFT = NX 

Are there 

+I I1 = c u r r e n t  subset number 

[Choose points to determine  Lagrange  polynomial 1 
I 

NM = index of  f irst  point to be tested I 
I 

Y ( J l  = input value of Y 

1 No 

I 
9 LHIGH(I1 - 1) = LLOW(II1 

c Decrease  LLOW(I1) by 1 

hi""Q 
= NN 

"i" 

"-- Move elements of  index arrays down] 

Set spline joint array 

Return 
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Subrou t ine  REFIT 

Q 
In i t ia l ize:  

New  subset counter   (NSS) 
Old subset  counter  (NST) 
Coeff icients  for  test ing  polynomial 

I S T  - 1 
r J 

8 I = I S T  

Increase  NST by 1 

4 I = I + 1  

Calculate: 
Y I   = t e s t   p o l y n o m i a l   v a l u e   o f  Y fo r   XU)  

I 
YJ = Y I  Have  reached  end  of  NSSth 

TO L? Set  (NSS + Uth element  of   low  index  array 

I 
Set TOL to be less  than  zero 

[Increase  new  subset  counter- - 
~~ 1 1 = N X  

[ Set  last  element in h i g h  index-] 

6 Retu rn  

[Choose  new  coefficient!  for  testing  polynomlal] 

I 
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Subrout ine MINVRT 

cp 
side  of  working  array  and 

f i l l   r i g h t  side of  work ing  ar ray  wi th  unit ma t r i x  

[Diagonal ize  le i -s ide of work ing  ar ray  and  ca lcu late  determinant ]  

I 
[ E l i m i n a t e  above diagonal e leme i t s  o n  left side of working  array I ( inverse  is  now in r i gh t  side o f   work ing   a r ray)  

I 
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I 

Subrou t ine  DEFMAT 

Define  matrix C as  
ma t r i x   o f   cons t ra in t s  

Q 
-1 Define ( Y T W X ) ~  and  T - (XTWX)N I 1 -  + T = T-l 

Store T in i t s  proper location in mat r i x  XWX 

-8 R e t u r n  

I 

69 



Subrou t ine  ASOLVE 

Do a simple  least 

" ^ '  Define  matr ix B - C(XTWX) -kT  
0 R e t u r n  

N -column  index  of   submatr ices of BINV 
L - row index  of  submatrices of BlNV 

1 

6 Retu rn  
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-T 
inversion of Matrix B 
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APPENDIX F 

COMPUTER  INPUT  AND OUTPUT SHEETS FOR SAMPLE PROBLEM 1 

INPUT FOR SAMPLE  PROBLEM 1 

1-6 7-12 
SAMPLI  

2 4 5  
l 6 F 1 2 . 5 )  

0 : 

8.86 

60.805 
12.90 

180.88 
248.09 
265.94 

360.89 
406.99  
445.53 
506.57 
5 73.47 

699.31  
626.50 

900.80 

279.30 

2865.4 
3957.1 
7200.0 

11750.0 
15640.0 

23440.0 
47300.0 
(12F6.01  
'00. 7 0 0 0 .  

19550.0 

0 

~ 

13-181 _ _  ~- 19-24 
PROBLEM 

O F F F  
1 

13.116 
5.556 

43.043 
116.49 
158.00 
168.00 

244.41 
181.84 

260.51 
287.06 
324.27 

407.06 
372.89 

455.99 
598.51 

1837.9  
2554.0 
4349.0 
7009.0 

10360.0 
11720.0 
14970.0 

a7ea.o 

Card column 

25-3( 

F .  

31-36 

1 

37-42 I 43-48 

10.98 
16.81 

120.86  
240.82 
255.89  
275.78 
300.85 
374.74 
415.79 
480.48 
513.07 
600.79 
644.26 
722.16 

3598.7 
4281.0 

L2730.0 
8503.6 

16940.0 
!1160.0 
11230.0 

968.34 

- 

19-60161-6 

11.967 
86.038 

7.6791 

161.03 
159.89 
174.92 
210.51 
238.03 

320.67 
275.91 

327.02 
400 49 

489.77 
414.99 

624.53 
2386.4 
2821.0 
5426.0 
7587.0 
9427.5 
1060.0 
4020.0 
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OUTPUT FOR SAMPLE  PROBLEM 1 

Linear Fit 

8.85999990 
I N D .  V A R .  

10.S799999 
12.8999997 
16.8099997 
60.8049994 

180.879997 
240.819998 

255.889997 

275.779995 
265.93'3995 

300.849995 
279.299995 

374.739998 
360.889996 

406.989994 
415.789997 
445.529991 
480.479996 

513.069992 
506.569996 

600.789993 
573.469994 

626.499992 
644.25  999 5 
699.309990 
722.159996 

968.339981 
900.799995 

2865.39996 

3957.09998 
3598.69998 

4280.99994 
7199.99994 
8503.59985 
11749.9999 
12729.9999 
15639.9998 
16939.9998 
19549.9998 
21159.4998 

47300.0030 
31229.9998 

120.859998 

240.089996 

23439.9998 

D E P - V A R .  
5 .55599999 
7.67979997 
13 .1160001 
11 .9670000 

86 .0380001 

161.030001 
116.490000 

158.000000 
159.889999 
168.000000 
174.920000 

210.510000 
181.840000 

244.469999 
238.030601 
260.509998 
275.910000 
287.06COOl 
320.669998 

327.020000 
324.270600 

372.88S999 
400.490002 
407.06000 1 
414.990002 
455.99G002 
489.770000 

624.529999 
598.510002 

2386.39999 
1837 .   as999  

2821.0000G 
2554.00000 

4349.0c000 
5426.00CCO 
7009.00000 
7587.00COC 
8788.  o o o o c  
9427.5000t  

11060.0COO 
10360 .OOOC 

11720.0000 
14020 .OOOC 
14910 .COOG 

43.0430002 

CALC. FUNC.  
473.876369 
474.759743 
475.559776 
477.189011 
495.521046 
520.545029 
545.554428 
570.530502 
573.559792 
576.809937 
580.997612 
585.097786 
586.564514 
595.544067 
620.561806 
626.332886 
639.770958 
643.437782 
655.829979 
670.393097 
681.264397 
683.972847 
709.140587 
720.524406 
731.237366 
738.637680 
761.576164 

873.676781 
845.533920 

1664.15222 
1969.70695 
2119.04666 
2254.01074 

4013.50259 
3473.31274 

5366.22705 
5774.57782 
6987.12964 
7528.81946 

9287.22791 
8616.36584 

10237.2684 
13483.2406 
20179.3601 

771.097404 

T ~ f i  R E G R E S S I O N  E Q U A T I O N  F O R  T H E   A B O V E  I S  

Y = A 0  + A 1  X + ... 
T H E  P A R A Y E T E R S  ( A O - A l )  A R E  

470.104547  0 .41668448 

D E V I A T I O N  
-468.320366 
-467.079941 

-465.222008 
-462.443775 

-452.478043 
-434.507027 
-429.064426 
-409.500500 

-416.919937 
-415.559792 

-410.177784 
-412.997612 

-385.034065 
-376.091805 
-388.302883 

-367.527782 
-368.769978 
-349.723099 

-356.952847 
-356.994396 

-336.250587 
-320.034405 
-324.177364 
-323.647678 

-281.327404 

-249.146782 
-247.023918 

173.747772 

434.953339 
416.693039 

566.989258 
878.687256 
1412.49741 

1812.42218 
1800.87036 
1898.68054 
1743.63416 
1772.77209 
1482.73157 

-5209.36011 

-404.7245  14 

-379.260960 

-305.586163 

1642.77295 

536.759399 

RELATIVE E R R O R  

-0.98382381 ' 

-0 .98827541 

-0.97241987 
-0.97492187 

-0 .83411554 
-0.91313587 

-0 .78647409 
-0 .71775391 

-0.72280297 
-0 .72452741 

-0.71084218 
-0.70104142 
-0.68999147 
-0 .64652489 
-0 .60605051 
-0 .61996241 

- 0 , 5 7 1 1 9 3 9 7  
-0.59280740 

-0 .52166870 
-0 .56229509 

-0 .52401739 
-0.52188160 
-0.47416633 
-0.44416812 
-0.44332113 

-0 .36484029 
-0 .40125489 

-0.29215140 
-0 .28517043 

0 .21155077 
0.20525897 
0.25154683 
0 .25320117 

0 .30613183 
0 .35193633 

0 .25774108 
0 .31386228 

0 .20236306 

0 .14483663 
0.19088280 

0.39809376E-01 
-0 .25815289 

-0.43816838 

0.10440617 

0.25218835 

THE V A R I A N C E =  1346098.9 S T A N D A R D  D E V I A T I O N =  1160.2150 
DETERMINANT= 86.72037 
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Parabolic Fit 

I N D .  V A R .  
8 .85999990 
10.9799999 

16.8099997 
12.8990997 

60.8049994 
120.859998 

240.819998 
180.879997 

248.089996 
255.889997 
265.939995 
275.779995 
279.290995 
300.849995 
360.889996 
374.739998 
406.980994 
415.789997 
445.529991 
480.479996 

513.069992 
573.469994 
600.789993 
626.499992 
644.259995 
699.309990 
722.159996 
900.799935 
968.339981 

3598.69998 
2865.39996 

3957.09998 
4280.99994 
7199 .99994  
8503.59985 
11749.9999 
12729.9999 
15639.9998 
16939.9998 
19549.9998 
21159.9998 
23439.9998 
31229.9998 
47300.0000 

506.569996 

D E P . V A R .  
5 .55599999 
7 .67979997  
13 .1160001  

43.0430002 
11.9670000 

86.038C001 
116.490COO 
161.03000 1 

159 .889999  
158.000000 

168 .000000  
174 .920000  
181.840000 

244 .469999  
210.510COC 

238 .030001  

275.910C00 
260.509998 

287.06C001 
320.669998 
324.27000C 
327.02COOC 
372.889999 
400 .490002  
407 .060001  
414 .990002  
4 5 5 , 9 9 0 0 0 2  
489.77000C 

624 .529999  
598.510002 

1837.89999 
2386.39999 
2554.00000 
282L.OOOOC 
4349.  ooooc 
5426.0000(! 
7009 .0000n  
7587.00000 
8788.00005 
9427.50000 
1 0 3 6 0   - 0 0 0 0  
11060.COOO 
11720.0000 
14020 .0000  
14970 .  O C O O  

CALC. F U N C .  
-7 .82075904 
-6.36010355 

-2.34366494 
-5.03730673 

69.2492838 
27.9484172 

110.469475 
151.578245 
156.560404 
161.904854 
168.789560 
175.528872 

192 .692173  
233.756330 

177.939314 

243.220953 
265.247829 
271.255432 
291 .549381  
315.380772 
333.158276 
337.585655 
378.694500 
397.269943 
414.740002 
426.801937 

479.650211 
600.481705 
646 ,034935  
1896.25816 
2364.37613 

2792.35071 
4540.73303 
5278.30939 
6999.1007 1 
7486.02826 
8842.99243 

10456.8165 
11051.5273 

13847.4071 
11824.0630 

15009.6951 

464.158379 

2590.09534 

9406.20850 

DEVIATION 
13.3767591 
14.0399035 
18.1533067 

15.0945830 
14 .3136649  

6 .02052498  
16.7887163 

9.45175552 
1.43959618 

-2.01485443 
-0.78956032 
-0.60887146 

3.9036862h 
17.8170272 
10.7136688 

-5.19095230 
-4.73783112 

-4.48937988 
4.65456772 

5.28922653 

-10.5656548 
-5.80450058 

3.22005844 
-7.68000031 
-11 .8119354  
-8.16837692 

10.11  97891 
-1.97170258 
-21.5349362 
-58 .3581696  

-36.0953369 
22.0238647 

28.6492920 
-191.733032 

147.690613 
9 .89929199  
100.971741 

-54.9924316 
21.2915039 

-96.8165283 
8.47265625 

-104.062988 
172.592896 

-39.6950684 

-8.88827515 

THE R E G R E S S I O N  EQUATION FOR T H E   A B O V E  I S  

Y = A0 + A 1  X + 

T H E  P P R A M E T E R S  lAO-A2) A R E  
-13.9259609  0.68914430  -0.78545492E-05 

T H E  VARIANCE=  3248.4323 S T A N D A R D  DEVIATION=  56.995019 
DETERMINANT=. 15.83930 

RELATIVE E R R O R  

-2 .20749605 
-1.71041697 

-3.60377234 
-6.10610527 

0.54038722 
0.24243884 
0.54499444E-01 
0.62355620E-01 
0.91951485E-02 

-0.12444682E-01 
-0.46777793E-02 
-0.34687824E-02 

0.21921441E-31 
0.9246783  1E-0 1 
0.45832636E-01 

-0.21342537E-01 
-0.17861903E-01 

0.17159353E-01 
-0.15398352E-01 

0.16770923E-01 

-0.31297700E-01 
-0.26678836E-01 

-0.15327660E-01 
0.81054670E-02 

-0.18517626E-01 
-0.27675449E-01 
-0.17598254E-01 

0.21098269E-01 

-0.33287575E-01 
-0.32835348E-02 

-0.30775435E-01 

-0.13935911E-01 
0.93148735E-92 

0.10259919E-01 
-0.42225128E-01 

0.27980666E-91 
0.14143663E-02 

-0.62187582E-02 
0.13488026E-01 

-0.,92587001E-02 
0.22635586E-02 

-0.88009500E-02 
0.76665025E-03 

0.12463914E-91 
-0.26446285E-02 
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Cubic Fit  

I N D .  V A R .  
8.85999990 
10.9799999 
12.8999997 
16.8099997 
60.804999 4 
120.859998 

240.819998 
100.879997 

255.889997 
248.089996 

265.939995 
275.779995 
279.299995 
300.849995 

374.739998 
360.889996 

406.989994 
415.789997 
445.529991 
480.479996 
506.569996 
513.069992 

600.789993 
573.469994 

626.499992 
644.259995 
699.309990 
722.159996 
900.799995 
968.339981 
2865.39996 
3598.69998 
3957.09998 
4280.99994 

8503.59985 
7199.99994 

11749.9999 
12729.9999 
15639.9998 
16939.9998 

21159.9998 
19549.9998 

23439.999 8 
31229.9998 
47300.0000 

D E P - V A R .  
5 .55599999 
7.6797S997 
13.1160001 
11 .9670000 
43 .0430002 
86.038C001 
116.490000 
161.030001 
158.000000 
159.889999 
168.000000 
174.92000C 
181.84000C 
210.51COOC 
244.469999 
238.03C001 
260.509998 
275.910000 
287.060001 
320.669990 

327.020000 

400.490002 
372.889999 

414.993002 
407.06000 1 

455.990002 
489.770000 

624.529999 
598.51C002 

1 8 3 7 . 8 9 9 9 9  
2386.39999 
2554.00000 
2821.00000 
4349.00000 
5426.00000 
7009.0COOO 
7587.00000 
8788.00000 
9427.5COOQ 
10360.COOO 

324.270COC 

11060 .OOGO 

14020.  no00 
1172o.0000 

14970.0000 

CALC. FUNC.  
-1.94968595 
-0.50512648 

0.8030970 1 
3.46707362 
33 .4265404 
74.2768517 
115.050751 
155.717804 

165.933983 
160.646660 

172.745182 
179.412632 
181.797392 

237.022972 
196.393326 

246.387926 
268.183537 
274.128231 
294.2102'21 
317.793720 
335.387054 
339.768669 
380.454430 
398.839809 
416.131741 
428.071049 
465.049557 
480.385475 

645.126C60 
600.017441 

2349.77625 
1884.78838 

2775.28751 
2574.14865 

4517.62238 
5254.61517 
6978.67584 
7467.71558 

9401.30420 
8833.32520 

10462.5498 

11846.6@07 
11064.2125 

13895.7180 
14985.5291 

D E V I A T I O N  
7.50568593 
8.18492639 
12.3129030 
8.49992633 
9.61645985 

1.43924904 

-6.04398346 
-2.64665985 

-4.745  182  04 
-4 .49263191 

0.42608261E- 
14 .1166744 
7.44702721 

-8.35792542 
-7.67353821 

1 .781  76880 
-7.15019989 

2.87627792 
-11.1170540 
-12.7486687 
-7.56443024 

-9 .07173920 
1 .65919226 

-13 .0810471 
-9.05955505 

9.38452530 
-1.50743866 
-20.5960617 
-46.8883820 

36.6237488 
-20.148651 1 

-168.622375 
45.7124939 

171.384827 
30.3241577 
119.284424 

-102.549805 
26.1958008 

-4 .21252441 
-126.600708 

-15.5290527 
124.281982 

11.7611485 

5.31219673 

-45 .3251953 

RELATIVE E R R O R  
-3 .84968969 
-16.2037168 

2.45161402 
15 .3317754 

0 .15834204 
0.12509688E-01 
0.34114254E-01 

-0.16475038E-01 
-0.36424024E-01 

-0.25040778E-01 
-0.27469258E-01 

-01 0.23437223E-03 
0.71879603E-01 
0.31419010E-01 

-0.33921814E-01 
-0.28613010E-01 

0.64997639E-02 

0.28768935 

- 
-0.24303032E-01 

0.90557701E-02 
-0.33146938E-01 

-0.19882618E-31 
-0.37521613E-01 

0.41374813E-02 
-0 .2180Cl62E-01 

-0.19480838E-01 
-0.30558121E-01 

0.19535406E-01 
-0.25123247E-02 
-0.31925639E-01 

0.15586058E-01 
-0.78273067E-02 

0.16471264E-01 
-0.37325469E-01 

0.32616057E-01 
0.43452595E-02 
0.15973348E-01 

-0.51311589E-02 
0.27864007E-02 

-0.98016072E-02 

-0.10686670E-01 
-0.38073423E-03 

0.89439050E-02 
-0.10362699E-02 

- 0 . 2 4 8 7 7 2 6 6 ~ - n t  

THE R E G R E S S I O N  E O U A T I O N  FOR T H E  ABOVE IS 

Y = A0 + A 1  X + ... 
T H E  P L R A M E T E R S  (AO-A3 1 A R E  

-7.98756391  0.68154073  -0.72963022E-05  -0.86881731E-11 

T H E   V A R I A N C E =  3157.9090 S T A N D A R D  D E V I A T I O N =  56.195276 
DETERMINANT= 0.128715 
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I 

FITLOS Fit 

SAMPLE PROBLEM 1 

SPLINE  JOINTS CHOSEN BY PROGRAMMER 

DEGREE  OF PDLYNOMIAL = 2 NUMBER  OF SEGMENTS = 3 

EPUATICN  FITTED I S  Y = A 0  + A1 x + A2 x+*2 

SEGMENT COEFFICIENTS I N  ASCENDING ORDER - 
A0 

4 . 0 5 6 0 9 5 5 1 1 9 1 8 0 1 6 0  00 5 . 3 7 9 1 8 1 5 6 7 7 8 3 7 4 6 0 - 0 1  3 . 4 8 5 2 1 4 2 3 5 9 2 0 5 4 7 0 - 0 4  
- 1 . 0 1 6 4 9 9 8 1 1 3 0 2 8 5 6 0  0 1   6 . 8 0 1 2 9 0 9 3 0 2 7 8 3 3 4 0 - 0 1  - 7 ~ 0 0 5 9 1 7 0 3 1 6 1 3 8 7 1 0 - 0 6  
- 5 . 5 0 0 8 8 7 5 6 5 2 6 8 2 0 3 0  0 1   6 . 9 2 9 4 1 6 2 9 4 6 7 7 5 2 0 0 - 0 1  - 7 . 9 2 1 0 9 8 2 0 5 8 9 4 8 4 0 0 - 0 6  

A1 A 2  

SPLINE  JOINTS ARE - 

X 
8.860300OE+00 
1 . 0 9 8 0 0 0 0 E + 0 1  

1 . 6 8 1 0 0 3 0 E + 0 1  
1 .2900000E+01  

6 .0804999E+01  
1 .208600OE+02  
1 .8088000E+02  
7 . 4 0 8 2 0 3 0 € + 0 2  
2 . 4 8 0 9 0 0 0 € + 0 2  
2 .5589000E+02  
2 .6594000E+02  
2.7578030E+02 

3 .0085000E+02  
2 .7930000E+02  

3 . 6 0 8 9 0 3 0 € + 0 2  
3 .7474030E+02  

4 . 1 5 7 9 0 0 0 E + 0 2  
4 .0699000E+02  

4 .4553000E+02  
4 .8048030E+02  
5 .0657000€+ ,02  
5 . 1 3 0 7 0 0 0 € + 0 2  

6 .0070000E+02  
5 .7347030E+02  

6 .2650000E+02  
6 . 4 4 2 6 0 0 0 € + 0 2  
6 .5930999E+02  
7 . 2 2 1 6 0 0 0 € + 0 2  
9 . 0 0 8 0 0 0 0 E + 0 2  
9 .6833999E+02  
2 . 8 6 5 4 0 0 0 € + 0 3  
3 .5987000E+03  

4 . 2 8 1 0 0 0 0 € + 0 3  
3 .9571000E+03  

7 .2000030E+03  

1 . 1 7 5 0 0 0 0 € + 0 4  
1 . 2 7 3 0 0 0 0 € + 0 4  
1 .564003DE+04  
1 .6940000E+04  
1 . 9 5 5 0 0 0 0 € + 0 4  
2 .1160030E+04  
2 . 3 4 4 3 0 0 0 E + 0 4  
3 .1230000E+04  
4 . 7 3 0 0 0 3 0 € + 0 4  

8 . 5 0 3 5 9 9 9 ~ + n 3  

8.86COOOO 

Y 
5 .5560000E+00  
7 . 6 7 9 8 C 0 0 € + 0 0  
1 .3116000E+01  
1 .1967000E+01  
4 .3043000E+01  
8.6037SS9E+01 
1 .1649000E+02  

1.580OOOOE+02 
1 .6103000E+02  

1 .6800000E+02  
1 .5989000E+02  

1 .8184000E+Oi  
1 . 7 4 9 2 0 0 0 € + 0 2  

2 .105   1000  E+02 
2 .4747000E+02  

2.60510COE+02 
2 .3803000E+02  

2 .7591000E+02  
2 .8706000E+02  
3 . 2 0 6 7 0 0 0 € + 0 2  
3 .2427000E+02  
3.270200GE+02 
3 . 7 2 8 9 0 0 0 € + 0 2  
4 . 0 0 4 9 0 0 0 € + 0 2  
4 .0706000E+02  
4 . 1 4 9 9 0 0 0 € + 0 2  
4.5599COOE+02 
4 .8977000E+02  
5.9851COOE+02 
6 . 2 4 5 2 9 9 9 € + 0 2  
1 . 8 3 7 9 0 0 0 € + 0 3  

2 .5540000E+03  
2 . 3 8 6 4 0 0 0 € + 0 3  

4 .3490000E+03  
2.82100COE+03 

5.4260COOE+03 

7 .5870000F+03  
7 .0089999E+03  

8 .7880000E+03  
9 . 4 2 7 4 9 9 9 € + 0 3  

1 .1060000E+04  
1 . 0 3 6 0 0 0 0 € + 0 4  

1.1720COOE+04 
1.4020COOE+04 
1 .4970000E+04  

200.00000 7000 .00  

8 . 8 4 9 4 0 9 1 8 1 1 0 1 1 4 8 0  00 
Y+ 

1 . 0 0 0 4 4 5 4 7 6 5 9 8 7 3 5 0   0 1  

1 . 3 1 9 6 9 8 3 5 2 0 5 5 7 1 9 0   0 1  
1 . 1 0 5 3 2 3 7 1 7 1 4 1 9 6 5 0   0 1  

3 . 8 0 5 2 7 7 9 0 8 0 2 5 7 5 8 0   0 1  
7 . 4 1 5 9 7 8 4 8 1 4 5 4 9 6 2 0   0 1  
1 . 1 2 7 5 7 5 0 6 7 5 9 1 0 7 0 0  02  
1 . 5 3 2 1 7 3 8 6 8 0 2 6 6 1 9 0  0 2  
1 . 5 8 1 3 7 0 2 3 9 5 7 4 9 9 1 D  02  
1 . 6 3 4 1 4 4 8 9 7 9 8 8 2 6 1 0  0 2  
1 . 7 0 2 1 3 0 4 4 8 9 6 0 5 7 1 0  02 
1 . 7 6 8 6 8 1 7 0 0 6 0 3 4 6 4 0   0 2  
1 . 7 9 2 4 8 5 3 6 0 4 5 0 3 2 3 0   0 2  

2 . 3 4 3 7 4 3 2 8 0 6 9 4 3 6 9 0  0 2  
1 . 9 3 8 1 7 7 2 7 8 8 0 7 2 6 3 D  02  

2 . 4 3 7 2 2 7 3 7 9 3 8 6 3 3 0 0  02  

2 . 7 1 4 1 4 6 8 5 8 8 1 3 9 7 1 0  02  
2 . 6 5 4 8 0 2 7 6 4 6 1 4 6 5 9 0  02 

2 . 9 1 4 6 2 2 6 2 5 0 1 8 3 5 6 0  0 2  
3 . 1 5 0 0 6 0 3 4 9 7 1 9 1 3 0 0  02 

3 . 3 6 9 4 4 5 9 2 0 6 2 8 1 3 9 0  0 2  
3 . 3 2 5 7 0 1 8 5 7 9 4 1 7 9 0 D   0 2  

3 .7756461287835850  0 2  
3 . 9 5 9 2 0 9 8 4 1 8 9 0 1 3 4 0   0 2  
4 . 1 3 1 8 6 0 4 0 4 7 0 6 8 7 3 0  02 
4 . 2 5 1 0 7 0 2 0 1 7 3 5 9 2 6 0  02  

4 .773433388812723D 02 
4 . 6 2 0 2 9 9 4 1 3 3 0 5 6 1 3 0  02  

6 . 4 1 8 6 1 8 8 0 6 0 3 1 8 2 9 0  0 2  
5 .968104051235945D 0 2  

1 .881154699133198D 0 3  

2 . 5 7 1 4 7 0 7 0 4 1 7 9 8 3 6 D   0 3  
2 . 7 7 3 0 7 0 4 8 0 9 3 1 5 0 3 0   0 3  
4 . 5 2 3 5 4 1 1 2 5 5 2 1 5 4 3 0  0 3  

6 . 9 9 3 4 4 8 6 4 9 5 4 2 0 4 7 0   0 3  
5 . 2 6 4 7 0 5 3 3 1 8 1 7 1 9 4 0   0 3  

7 . 4 8 2 5 0 1 1 3 2 0 2 1 7 4 4 0   0 3  
8 . 8 4 5 0 2 1 5 4 5 5 1 8 3 0 3 D   0 3  
9 . 4 1 0 3 5 5 4 7 0 4 1 3 9 1 1 0   0 3  

1 . 1 0 6 0 9 9 9 1 3 5 0 2 7 6 4 0   0 4  
1 . 0 4 6 4 5 3 6 4 4 3 4 0 3 3 4 0   0 4  

1 . 1 8 3 5 4 2 5 4 1 5 8 5 3 0 8 0   0 4  
1 . 3 8 6 0 0 0 8 9 5 0 2 4 9 1 2 0   0 4  
1 . 4 9 9 9 3 3 6 3 9 3 1 0 5 5 2 0   0 4  

2 . 3 4 6 6 8 4 4 5 5 4 6 6 7 6 1 0  0 3  

CORRELATION OF FITTED DATA T O  ORIGINAL D A T A  

STAYDARO DEVIATION = 5 . 6 2 2 0 9 4 5 8 3 5 1 1 3 5 2 0   0 1  
VARIANCE = 3 . 1 6 0 7 9 4 7 6 5 4 3 4 0 4 2 0  0 3  

NO R E F I T  C H E C K  M A D E  

100 47300 .000  

DEV 

2 . 3 2 4 6 5 4 7 3 2 0 2 2 6 6 0 0  00  
3 . 2 9 3 4 0 9 1 8 6 8 2 3 1 9 4 0  0 0  

- 2 . 0 6 2 7 6 2 8 8 4 8 4 7 i 3 4 0  00 
1 . 2 2 9 9 8 3 5 1 2 9 2 7 7 9 7 0  0 0  

- 4 . 9 9 0 2 2 1 1 4 0 9 9 4 8 6 2 0  00 
- 1 . 1 8 7 8 2 1 5 2 9 2 2 6 1 9 1 0   0 1  
- 3 . 7 3 2 4 9 3 0 1 2 0 1 1 1 4 7 D  00 
- 7 . 8 1 2 6 1 3 8 8 3 9 8 3 6 0 2 0  0 0  

1 . 3 7 0 2 3 9 5 7 4 9 9 0 8 1 9 0 - 0 1  
3 . 5 2 4 4 9 0 4 0 9 1 7 7 6 3 1 D  00 
2 . 2 1 3 0 4 4 8 9 6 0 5 7 0 5 6 0  00 
1 . 9 4 8 1 6 9 9 8 4 0 5 2 4 1 3 0  00 

- 1 . 6 6 9 2 2 7 2 3 4 8 1 5 5 4 8 0   0 1  
- 2 . 5 9 1 4 6 4 1 0 7 5 5 5 6 2 3 0  0 0  

- 1 . 0 0 9 5 6 7 1 2 4 3 9 1 7 6 2 0   0 1  
5 . 6 9 2 7 3 7 2 5 1 9 8 7 5 2 3 0  00 

- 4 . 4 9 5 3 1 3 9 6 6 0 1 5 0 3 3 0  00 
4 . 9 7 0 2 7 8 1 4 5 9 3 2 7 5 3 0  00 

4 . 4 0 2 2 6 1 1 2 8 5 4 4 5 8 1 0  0 0  
- 5 . 6 6 3 9 6 3 1 9 7 0 3 2 3 0 2 D  30 

8 . 3 0 0 1 8 5 3 3 6 4 1 5 2 9 6 0  00 
9 . 9 2 4 5 9 1 6 0 5 0 5 0 2 3 9 D  0 0  

- 4 . 5 6 9 0 1 7 4 8 9 4 5 3 4 1 5 0  00 
4 . 6 7 4 6 1 3 4 8 8 7 1 0 1 2 2 0  00 

6 . 1 2 6 0 3 9 0 9 7 3 9 6 3 0 1 0  00 
1 . 0 1 1 7 0 1 8 4 9 5 1 2 5 8 2 0   0 1  
6 . 0 3 9 9 3 9 6 5 2 0 9 4 4 6 1 0  DO 

- 1 . 2 4 2 6 6 6 1 5 7 6 4 9 1 3 1 0   0 1  
- 1 . 6 9 9 5 9 7 0 1 2 6 3 5 9 3 4 D  00  

4 . 3 2 5 4 7 0 5 2 3 6 7 1 3 5 6 0   0 1  
1 . 7 3 3 1 8 8 1 8 2 3 8 8 6 0 8 D   0 1  

- 3 . 9 7 1 5 5 3 8 4 2 9 7 2 3 4 4 0   0 1  
1 . 7 4 7 0 7 0 4 1 7 9 8 3 6 5 0 0   0 1  

- 4 . 7 9 2 9 5 1 9 0 6 8 4 9 7 0 3 D   0 1  

- 1 . 6 1 2 9 4 6 6 8 1 8 2 8 0 5 2 D  0 2  
1 . 7 4 5 4 1 1 2 5 5 2 1 5 4 3 6 0  0 2  

- 1 . 5 5 5 1 3 5 0 4 5 7 9 5 3 0 5 0   0 1  
- 1 . 0 4 4 9 8 8 6 7 9 7 8 2 5 5 5 D  0 2  

5 . 7 0 2 1 5 4 5 5 1 8 3 0 3 3 5 0   0 1  
-1 .714452958608854D  01  

9 . 9 9 1 3 5 0 2 7 6 3 9 5 6 7 9 D - 0 1  
1 . 0 4 5 3 6 4 4 3 4 0 3 3 4 5 4 D  0 2  

1 . 1 5 4 2 5 4 1 5 8 5 3 0 8 0 3 0  0 2  
- 1 . 5 9 9 9 1 0 4 9 7 5 0 8 8 1 8 D  0 2  

2 . 9 3 3 6 3 9 3 1 0 5 5 1 9 1 6 0   0 1  

R - E R R  
3 . 5 9 2 7 6 6 2 3 2 9 4 0 0 7 0 0   0 0  

- 3 . 1 5 7 2 7 0 7 2 8 5 7 5 6 3 4 0  O C  
3 . 3 0 2 6 9 7 3 0 9 8 1 3 2 0 8 0  00  

- 3 . 1 1 5 9 3 5 7 1 8 1 2 7 0 7 8 0  0 3  
? . 1 0 2 7 8 1 2 7 4 5 1 6 8 9 1 0  05 

- 3 . 1 3 8 0 5 7 7 8 0 0 2 1 8 0 1 0  0 0  

- 3 . 4 8 5 1 6 5 1 1 5 2 3 7 5 3 1 0 - 0 1  
- 3 . 3 2 0 4 1 3 1 7 0 1 7 2 9 6 1 0 - 0 1  

0 . 8 6 7 2 4 0 2 3 7 3 3 5 9 6 1 0 - 0 3  
3 . 2 2 0 4 3 2 1 9 8 5 5 0 9 8 8 0 - 0 1  
3 . 1 3 1 7 2 8 8 6 2 8 6 0 5 3 9 0 - 0 1  

- 3 . 1 4 2 5 1 3 4 2 4 1 8 5 0 5 5 0 - 0 1  
3 . 1 1 1 3 7 4 9 1 3 2 8 6 2 2 7 0 - 0 1  

- 3 . 7 9 2 9 4 4 3 8 8 8 6 5 4 4 2 0 - 0 1  
-3 .4129615606116680- !?1  

3 . 2 3 9 1 6 0 4 9 3 8 6 9 0 7 8 0 - 0 1  
3 . 1 9 0 7 9 0 3 0 2 7 8 9 0 0 1 0 - 0 1  

- 0 . 1 6 2 9 2 6 8 2 2 8 2 2 6 9 9 0 - 0 1  
3 . 1 5 3 3 5 6 8 2 8 1 0 1 5 8 9 0 - 0 1  

- 3 . 1 7 6 6 2 9 0 3 3 8 7 8 2 5 6 0 - 0 1  

3 . 3 0 3 4 8 5 7 6 8 1 8 4 1 4 0 0 - 0 1  
3 . 2 5 5 9 6 5 2 5 5 0 2 5 0 7 6 0 - 0 1  

3 . 1 2 5 3 6 1 7 2 8 5 6 2 3 5 3 0 - 5 1  
- 3 . 1 1 4 0 8 5 6 8 1 7 9 7 4 1 1 0 - 0 1  

3 . 2 4 3 7 8 9 4 5 1 6 5 4 4 1 5 0 - 0 1  
3 . 1 5 0 4 9 4 7 4 4 6 7 4 7 1 6 0 - 5 1  

3 . 1 3 2 4 5 7 7 2 1 2 1 8 9 2 7 0 - O !  
- 3 . 2 5 3 7 2 4 4 3 3 2 0 0 8 2 3 0 - 0 1  
- 3 . 2 8 3 9 7 1 3 6 3 3 1 3 8 3 8 0 - 0 2  

3 . 2 7 7 5 1 8 8 0 3 8 6 4 7 1 2 0 - 0 1  

- 3 . 1 6 6 4 2 4 4 8 2 6 1 5 2 4 0 D - 3 i  
3 . 2 3 5 3 4 8 5 2 4 8 4 0 0 8 3 D - 0 1  

3 . 6 8 4 0 5 2 6 3 0 3 7 7 3 1 0 0 - 0 2  
- 0 . 1 6 9 9 C 2 5 8 4 4 3 2 8 1 5 0 - 0 1  

3 . 4 0 1 3 3 6 2 2 7 9 1 8 0 1 2 D - 0 1  
- 3 . 2 9 7 2 6 2 5 6 5 7 6 2 6 3 4 0 - 0 1  
- 5 . 2 2 : 8 7 6 8 7 9 1 2 6 1 6 7 0 - 0 2  
- 3 . 1 3 7 7 3 4 1 0 8 3 1 4 5 5 8 0 - 0 1  

3 . 6 4 8 8 5 6 9 1 3 0 4 3 9 6 2 0 - 0 2  
- 0 . 1 8 1 8 5 6 5 8 5 3 7 3 5 1 9 0 - 0 2  

7 . 1 0 0 9 0 3 9 0 2 8 9 8 9 8 2 0 - 0 1  
3 . 9 0 3 3 7 7 0 5 9 3 4 8 6 1 5 0 - 0 4  
3 . 9 8 4 8 5 8 4 9 7 0 3 9 9 3 4 0 - 9 2  

- 3 . 1 1 4 1 1 6 2 9 7 9 6 7 8 1 9 0 - 0 1  
3.195967889816427D-O. . '  

MAXIMUM CDRiELATION = 0 . 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0  C C  
CORRELATION I N D E X  = 0 . 9 1 1 0 3 7 7 9 4 1 5 5 0 1 7 0  O C  
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APPENDIX G 

COMPUTER  INPUT  AND OUTPUT SHEETS FOR SAMPLE  PROBLEM 2 

INPUT FOR SAMPLE  PROBLEM 2 

Card column 1 
1-6 I 7-12 113-18 
3 5 1  

P R O 8 1  SAMPLE 
0 .  0 0 

12E18.7vF6.0) 
0.0 
6.28318 

E-0.   1.256636 
E-0; 

2.513272 E-0: 
1.884954 E-0: 

3.14159 E - 0 .  
3.769908 E - 0 :  
4.398226 E-a :  
5.026544 

E-0' 6.911498 
E-0: 6.28318 
E - 0 .  5.654862 
E-O: 

7.539816 E-a 
8.168134 

E-0'  9.42477 
E-0.  8.796451 
E-0 

1.068141 
1.130972 
1 .193804  
1.256636 

1.3823 
1.319468 

1.507963 
1.445131 

1.633627 
1.570795 

1.696459 

1.0053n9 

1.75929 
J.8221212 
1.884954 

2 .0 ln618  
1.947786 

2.073449 
2.136281 
2.199113 
2.261945 
2.324777 
2.387608 
2 .45044 
2.513272 
2.576104 
2.638936 
2.701767 
2.764599 
2.827431 
2.890263 
2.953095 
3.015926 
3.078758 
3.14159 

1 
2 5 1  0 I 0 0 

19-24  25-30  31-36 -.;M; 

-3   222222 E - 0 1  -4: 3752145 E-01 
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FITLOS OUTPUT FOR SAMPLE  PROBLEM 2 

SAMPLE PROBLEM 2 

OATA OIVIUEO A S  EVENLY AS POSSIBLE AMONG THE MAXIMUM NUMBER OF SUBSETS 

DEGREE OF POLYNOMIAL = 3 NUMBER  OF  SEGMENTS = 10  

EaUATICN  FITTED I S  Y = A0 + A 1  X + A2  X**2 + A3  X**3 

SEGMENT COEFFICIENTS I N  ASCENDING ORDER - 
A0 A 1  

-9 .5999926188269760-01 -1.2196927085028620-03 1.0223985051097770 
-9.9427620283313440-01 -5.5870927477371880-02 1.1963589360821060 

-8.8763751721489830-01 -4.5563263211806770-01 1.7165218839945740 
-9.5637609886762220-01 -2.3683074797736480-01 1.4843656807206570 

-8.8263239746658800-01 -4.6765383146703240-01 1.7260880507528780 
-1.2012250572443010 00 1.4087177813053130-01 1 -3386883027851580  

-4.5532967150211330 00 4.9559525400400160 00 -9.7937496006488800-  
-2 .2666095048189160 00 1.8364852219820020 00 4.3913665413856510-  

-1 .3815877854824070   01  1 .5309907317161560   01  -4.8506462275981900 
-8.5195615738630290 00. 9.6903365254402160 00 -2 -8631280437111850  

A2 

SPLINE  JOINTS ARF - 

00 -1.1231313538701220-01 
A3 

00 -2 .9689104217686690-01 
00 -4 .4968349530245180-01 
OD -5.3179202490355240-01 
00 -5 .3432953194715080-01 
00 -4.5212068222463130-01 
01   -2 .9304489120841030-01 

.01  -7.8032205812633040-02 
00 1 ~ 7 1 8 0 8 5 1 6 1 4 1 0 2 7 2 0 - 0 1  
00 4.0612229146063330-01 

0 
2.1991130 

Y 

-9 .9605479 t -01  
-1.0000COOE+00 

-9.842502OF-01 
-9.6467949E-01 
-9.3749750E-01 
-9.0291959E-01 
-8.6122049E-01 
-8.1273279E-01 

-6.9699759E-01 
-7.578446OF-01 

-5.5944489E-01 
-6.306842OE-01 

-4.8386440E-01 
-4.0456910E-01 

0.3141590  0.6283180  1.570795C  1.8849540 
2.5132720 

0.9424770 
2.8274310 

1.2566360 
3.1415900 

-9.9999926188269760-01 
-9.9606749584764920-01 
-9.8423036367354150-01 
-9.6465502141683190-01 

Y. 
7.3811730239015110-07 

-1.2697483009971310-05 

2.4480533908910470-05 
1.9839101459973030-05 

-1.1125755627949820-05 
-3.8728288772715840-05 

3.4333390135365960-06 
5.1873506359174620-05 

6.1504917358012890-06 
5.2834169945725760-05 

-3.7639546383083640-05 
-1.7786843947764640-05 

OEV R-ERR X 
0. 
6.283180OE-02 

1.8849540E-01 
1.2566360E-01 

2.5132720E-01 
3.141590OF-01 
3.769908OC-01 
4.39822bOE-01 
5.0265440E-01 

6.2831799E-01 
5.6548620E-01 

6.911498OF-01 
7.5398160E-01 
8.1681340E-01 

9.4247700E-01 
8.7964510€-01 

1.0053090E+00 
1.0681410E+OG 

1.193M040E+00 
1.2566360E+00 
1.3194680E+O0 

1.4451310E+00 
1.3823000E+00 

1.5079630E+00 
1.5707950E+00 

1 .1309720~+00  

-0.7381173023901510-06 
0.1274777555493790-04 

-0.2015656324381600-04 
-0.2537685714209410-04 

3.1186750435946860-04 
0.4289228948155600-04 

-0.3986596937836200-05 

-3.6971636420952100-04 
-3.6382602745388860-04 

-0.8824265327591670-05 

3.3179373705446680-04 
0.5968049709374130-04 

-3.3933233906105650-04 

-0.2731249914709220-04 
-0.7406260507914840-04 

0.6951360449267960-04 
0.6302960595858850-04 

-3.1400051301610700-03 
0.7288606529229170-03 
0.1109481119617830-03 

-3.7642528870925160-05 

-0.4481469963519430-04 
-9.4936874166651480-04 

-0.1413609379020570-04 
3.2507481733789790-04 

-9.3750862236054730-01 

-8.6121706802426390-01 
-9.0295832621252830-01 

-8.1268092733527220-01 

-6.9699144732187040-01 
-7.5779176293126580-01 

-5.5946268372075970-01 
-6.3072183649538820-01 

-4.8384536901716050-01 
-4.0453913714703600-01 2.9963441524116790-05 

1.9031518661449810-05 

8.8006935433093680-06 -3.222222ot-01 

-1.5119020E-01 
-2.3752050E-01 

2.3333940E-02 
- 6 . 3 9 8 1 7 s n ~ - o 2  

-3.2221339859744750-01 
-2.3753701006096250-01 
-1.5119973027934770-01 -9.5294587825200950-06 

-1.6510906037159320-05 

8.9577732435008880-06 -6.3972792275453490-02 
2.3350947147213090-02 
1.0998280137472020-01 
1.9512990930271300-01 
2.7800017472596590-01 
3.5779896578810440-01 

1.7007190711959550-05 
1.2201030479497280-05 

-1.4912973627101420-06 
1 .0997060F-O1 
i . 9 5 1 3 1 4 0 ~ - 0 1  

3.5781500E-01 
2.7801390L-01 -1.3725196404967830-35 

-1.6035371801947920-05 
-6.1313327791578940-06 

1.2662466720159140-05 

-9.2626621357450030-06 
1.8047671581533640-05 

4.3373600E-01 
5.0498739E-01 

6.3040330E-01 
5.7079500E-01 

6.8308179E-01 
7.2812999E-01 
7.6487760E-01 
7.9269870E-01 
8 .1100659 t -01  
8.1926260E-01 
8.1697929E-01 

7.7912220E-01 
8.0372399E-01 

6.946923OE-01 
7.4286119E-01 

6.34434OOF-01 
5.6197330E-01 
4.77268496-01 
3.8035C2OE-01 

4.3372986887726760-01 

5.7081304727103830-01 
5.0500005876655920-01 

6.3039403994778470-01 -9.1469323224893780-04 
0.31618462282077lD-04 

6.8304962532391510-01 
7.2810631560778090-01 
7.6489265515878380-01 

-3.2172931528462460-05 
-2.3682241683475880-05 

1.5052700783613200-05 

-3.4709967621832480-04 

7.9273497492909770-01 
6.1099977515802130-01 
8.1921155793454400-01 
8.1693425828156660-01 
8.0373165758366840-01 
7.7916757706596410-01 
7.4285894970995780-01 

-6.8230165506388830-06 
3.6271222833228480-05 

-5.1043500640446380-05 
-4.5038223884574790-05 

0.4575663195062930-04 
-0.8413022244203990-05 
-0.6230419959488980-04 
-0.5512774200915660-04 

~~ ~ 

7 .6592158819721590-06 

-2.2466887772409900-06 
4.5373477478349860-05 

0.9529659307830300-05 
0.5823666334930310-04 

-0.3024372235530080-05 
-3.7987E04862950820-04 
-3.7590917792287750-04 

0.2608760608062410-04 

6 .9~63680949411180-01  
6.3438584029427060-01 

-5.5489275839093470-05 
-4.8159363360333880-05 

1.466G538171007430-05 
5.9420626349115930-05 

-6.9383841722725490-05 
1.5460517008847320-06 

-7.3310744497234740-05 
-1.0881928635519960-05 

4.8936414693834250-05 
1.9807882594591320-05 

-2.5576876932831280-05 
-2.4556680132903350-05 

7.3096385442283920-06 
3.6211661580409780-06 

5.6198796409461330-01 
4.7732791901726210-01 
3.8035174464841680-01 
2.7125271751287630-01 

0.1245014631165680-03 
0.4064811078287370-05 

-3.2557249902470930-03 2.6389360€+00 
2.7017670E+00 
2.7645990E+00 

2.713221OF-01 

1.7722890E-02 
1 . 5 0 3 6 2 2 0 E " l  1 .5028888842788040-01 

1.7712008085193350-02 
-1.2622036312224960-01 
-2.8119419091196110-01 
-4.4666357614331890-01 
-6.2202105627815920-01 
-8.0666769234033000-01 
-9.9999637883384200-01 

-0.4875610020387510-03 
- 0 ~ 6 1 4 0 0 4 1 8 4 8 1 5 7 3 6 0 - 0 3  
-0.3875559211407250-03 

~~ 

2.8274310E+00 
2.8902630E+00 

3.0787580El00 
3.015q260E+00 

3.1415930€+00 

2 .9530953~+00  

-1.2626930E-01 

-4.4663799~5-01 
-2.8121400E-01 

-6.2199650E-01 
-8.0667499E-01 
-1.0000000E+OO 

-3.7043704324642180-04 
3.5726534C10729480-04 
0.3948041532190850-04 

-3.3621166158040980-05 
-3.9061441753242550-05 

CORRELATION OF F I r T t O  O A T A  TO ORIGINAL O A T A  

VARIANCE = 1.9405527708483540-09 
STANDARD DEVIATION = 4.4051705572201170-05 

CORRELATION  INDEX = 0.4705882322388560 O C  
MAXIMUM CORQELATION = 0.4705882352941180 G C  

REFIT CHECK  HAS  MADE 
OUPLICATION OCCUREO I N   F I R S T  S E T  OF COEFFICIENTS - CURVE WAS R E F I T   I N  NEW SEGMENTS 
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I 

DUPLICATICN OCCURED IN   F IRST S E T  OF COEFFICIENTS - CURVE  HAS R E F I T   I N  NEW SEGMENTS 
SAMPLE PROBLEM 2 

DEGREE OF POLYNOMIAL = 3 NUMBER  OF  SEGMENTS = 6 

EQUATION FITTED I S  Y = A 0  + A 1  X + A2 X + + 2  + A3  X**3 

SEGMENT COEFFICIENTS I N  ASCENDING ORDER - 

- 1 ~ 0 0 0 0 5 3 3 7 1 3 7 6 7 1 8 0  00 -6.6644727526181670-03 1.076414097009774D 00 -2 -1091791470871610-01  

-9.5987108695653460-01 -2.7252584972302430-01 1.5688468323423880 00 -4.9378844099192070-01 
-9.2222092697920740-01 -3.7827301246579740-01 1.6678479594265810 00 -5.2468359031990990-01 

-4.228361103683710D 00 4.6043168194592000 00 -8.5669728182256220-01 -9.1665957588702440-02 
-4.694865703582764D 00 5.175445079803467D OD -1.0897681713104250 OD -5.9961467981338500-02 
-1.2000236306576730 01 1.3480314329266550 01 -4.236820912919939D 00 3-375540029956028D-01 

A0 A 1  A2 A3 

SPLINE  JOINTS ARE - 
0 0.6283180  1.0681410  2.0136180  2.4504400  2.6389366 3.1415900 

X 
0. 
6.2831800E-02 
1.2566360E-01 

2 -5132720E-01  
3.1415900E-01 

1 .ee49540~-01  

3.7699080E-01 
4.398226OE-01 
5 -0265440E-01  

6.2831739E-01 
5. 654862OE-01 

6-911498OE-01 
7.5398160E-01 
8 - 1 6 8 1 3 4 0 E - 0 1  

9.4247700E-01 
8.7964510E-01 

1.0053090E+00 

1-130Y720E+00 
1.0681410E+00 

1.2566360E+00 
1.1938040E+00 

1.3823030E+00 
1.3194680E+00 

1 -4451310E+00  
1.5079630E+00 

1.6336270E+OO 
1 -6964590E+00  

1 . 5 7 0 7 9 5 ~ ~ + 0 0  

2.2619450E+00 
2.3247770Et00 
2.3876080E+00 

2-9530950ElOO 

3 - 0 7 8 7 5 8 0 E l 0 0  
3.1415900E+00 

3 .0159260~+0n  

Y 
-1.0000COOE+00 
-9.9605479E-01 
-9.8425020E-01 
-9.6467949E-01 
-9.3749750E-01 

-8.6122049E-01 
-9.0291959E-01 

-8.1273279E-01 
-7.5784460E-01 
-6.9699759E-01 
-6.306842OE-01 
-5.5944489E-01 
-4.8386440E-01 
-4.0456910E-01 
-3.2222220E-01 
-2.3752050E-01 
-1.5119020E-01 
-6.3981750E-02 

1.099706OE-01 

2.7801390E-01 
1.9513140E-01 

4.3373600E-01 
5.0498739E-01 
5.7079500E-01 
6.3040330E-0i  

8.1100659E-01 
8.1926260E-01 
8.1697929E-01 
8.0372399E-01 
7.791222OF-01 
7.4286119F-01 
6 .9469230 t -01  
6.3443400E-01 
5.6197330E-01 
4.7726849E-01 
3.8035020E-01 
2.7132210E-01 
1.503622OF-01 
1.7722890E-02 

-1.2626930E-01 
-2.81214OOE-01 

-6.219965OE-01 
-4.4663799E-01 

-1.0000000E+00 
-8.0667499E-01 

-1.000050371376718D 00 
-9.9627192489777120-01 
-9.8430837622605160-01 
-9.6447363467671790-01 
-9.3708160675865580-01 
-9.0244620545221630-01 
-8 -6088133454685380-01  
-8.127009044980607D-01 
-7 -5821882050858340-01  
-6.9774900142454650-01 
-6.3160534971065350-01 
-5.6017959462390150-01 
-4.8417480885714940-01 

Y. 

-4 .043718597686763n-01 
-3.2155178111428;40-01 
-2.3649504982647670-Ok 
-1.4998268161816150-01 

~ ~" ~. 

-6.2795698742343480-07 
2.4291290648683220-05 
1.1053848928891920-01 
1.9520959951546090-01 
2.7756972947798850-01 

4.3241614034791210-01 
3 -5688392891639910-01  

5.6920095319309130-01 
5.0343386285108560-01 

6.2898250032391780-01 
6.8204359319355450-01 
7.2764865921640740-01 
7.6506424639281350-01 
7 -9355466347578140-01  
8.1238498575655440-01 
8.2082031002926390-01 
8.1822561876950320-01 
8.0436461848796090-01 
7.7910086014383140-01 

6.9381934757122380-01 
7.4229791234001220-01 

6.3352980660373690-01 
5.6129091917981100-01 
4.7697677278847730-01 

~~~~ . ~. 

3.8048666874870920-01 
2.7173312200208110-01 

1.7868523246207250-02 
1.5072603574133400-01 

-1.263368485042Y280-01 
-2.813876939819000D-01 
-4.4678162765835250-01 

-8.0658625800850810-01 
-6.2201344675524780-01 

-9.9999500873941290-01 

CORRELATION OF FITTED OATA TO URIGINAL O A T A  

STANDARD DEVIATION = 9.0368073870195080-04 
VARIANCE = 8.1663887434215320-07 

NO REFIT CHECK HADE 

OEV 
-5.037137671770608D-05 

-5.8173451350080870-05 
-2.1712653313199490-04 

2.0586727402294170-04 
4.1588984626361740-04 
4.7339247153932450-04 
3.3916681642365280-04 

-3.7422340737192080-04 
3.1896343270720880-05 

-7.514036109402822U-04 
-9.2115276164839170-04 
-7.3469774708961880-04 
-3.1040832132744890-04 

6.7041817670343560-04 
1.9724081988375940-04 

1.0254493284486690-03 
1.2075192024036950-03 

9.5735069158209280-04 
1.1860513363535190-03 

5.6788894467851850-04 

-4.4417044438238570-04 
7.8198915385185860-05 

-9.3107224350730270-04 
-1.3198598621346760-03 
-1.5535334487534190-03 

~ ~~ 

-1.5940464063654010-03 
-1.4208322860026090-03 
-1.0382050618891190-03 
-4.8133863305699350-04 

~.~ ~~ 

1 .8664393481337970-04 
8.5595976951691190-04 
1.3783875819823880-03 
1.5577085940794430-03 
1.246322264051969D-03 
6.4062012317451760-04 

-2.1343444654320360-05 

-8.7295119872710100-04 
-5.6328405872285710-04 

-9.0419305389399800-04 
-6.8238437663126210-04 
-2.9172560243573290-04 

4.1102064748210760-04 
1.3647015199325100-04 

3.6383656895644380-04 
1.4563323237837270-04 

-6.7548967349395640-05 
-1.7369518734433600-04 
-1.4362839196646600-04 
-1.6947157221558480-05 

8 .874~970366067510-05  
4.9912605870616740-06 

R-ERR 
0.5037137671770610-34 
3.2179865339622690-03 
3.5910433229890760-04 

-0.2134048392306920-03 
-0.4436170205997700-03 
-3.5242908367786900-03 
-0.3938211130445280-05 
-0.3924579300564980-04 

0.4937996639460670-33 

0.1460561032137090-02 
0.1078057676665370-02 

0.1313262040982380-02 

-3.4875?30804967970-03 
0.6415192375874500-03 

-0.2080608282665210-07 
-0.4317308746390800-02 
-0.7986755727884750-02 
-3.1853733768536820-01 

0.4102824869553860-01 
0.5164006951865840-02 
3.400750033796229D-03 

-0.1597655529117110-02 
-0.2602105111549560-02 
-0.3043002797774460-02 
-3.3076380638678360-02 
-3.2192677594379750-02 

-3.1519883950268680-02 
-3.2253798925418650-02 

-3.6610613962872420-03 
7.2440180418587020-03 
0.1079804679274570-02 
3.1699600946632110-02 
3.1901354451369620-02 
3.1525524905444960-02 
0 .7970648151299420-0~  

-0.2739421948959560-04 
-0.7582628645210140-03 
-3.1256601232333770-02 

-3.1214264756551240-02 
-0.1425196402434200-02 

-3.6112400114804790-03 
0.3588013165150200-03 
0.1514880820360930-02 
3.2419734287999710-02 
3.8217239528357820-02 
0.5349595475472830-03 
0.6176619517125500-03 

0.2724638680846410-04 
3.3215767404528480-03 

-3.1100120496462240-03 
-3.4991260587061670-05 
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SAMPLE  PROBLEM 2 

O A T A  O I V I O E O  AS EVENLY AS POSSIBLE AMONG THE M A X I M U M  NUMBER OF SUBSETS 

D E G R E E  O F  POLYNOMIAL = 2 NUMBER  OF  SEGMENTS = 10 

EPUATICN FITTED IS Y = A 0  + A 1  X + A2 X**2 

SEGMENT COEFFICIENTS I N  ASCENDING O R D E R  - 

-9.5997303068974430-01 1.5051882719490100-03 9.8’319617612206390-01 
-1.0185126112251060  00 1.1953192395549190-01 7.9235063250621350-01 
-1.1601840887528850 00 5.7048662598936060-01 4.3349197790189460-01 
-1.5752865214463010 00 1.4513620881729570 00 -3-3827362316472430-02 
-2.3800351341269560 00 2.7321603729542400 00 -5.4344124063300110-01 
-3.5423488166634340 00 4.212065367370087D 00 -1~0145100289810220 00 
-4.8097794992208950 00 5.5568522204412150 0 0  -1.3712261210203000 00 
-5.6720548603625500 00 6.3410550845583200 00 -1.5495259310300750 00 
-5.4018257222269310 00 6.126013386354316D 00 -1.5067447081228240 00 
-3.221716798667330D 00 4.5839004725567070 00 -1.2340390404242500 00 

A0 A1 A2 

SPLINE  JOINTS A R E  

X 
0.  
6.2831800E-02 
1.2566360E-01 
1.8849540E-01 
2.513272OF-01 
3.1415930E-01 

4.3982250E-01 
7.7699080E-01 

5.0263440E-01 
5.6548620E-01 
6.2831799E-01 
6.9114980.E-01 
7.5398160E-01 
fl. 1681340E-01 ~~ ~~ 

8.7964510E-01 
9.4247730E-01 

1.0681410E+00 
1.0053090E+OO 

1.130972OE+00 
1.1938040E+00 

0 
2.1991130 

Y 
-1.0000000€+00 
-9.9605479E-01 
-9.8425020E-01 
-9.6467949F-01 

-9.0291959E-01 
-9.3749750E-01 

-8.6122049E-01 
-8.1273279E-01 
-7.5784460E-Dl 
-6.9699759E-01 
-6.3068420E-01 
-5.5944489E-01 
-4.8386440E-01 
-4.0456910E-01 
-3.222222ot-01 
-2.3752C50E-01 
-1.5119020E-01 
-6;3981750€-02 

2.3333940€-02 
1.099706OE-01 

2.7801390E-01 
1.9513140E-01 

3.5781500E-01 
4.33736OOE-Dl 
5.0498739E-01 
5.7079500E-01 
6.3040330E-01 

7.2812999E-01 
6.8308179E-01 

7.6487760E-01 
7.9269870E-01 
8.1100659E-01 
8.192626CF-01 
8.1697929E-Dl 
8.0372399E-Dl 
7.7912220t-91 
7.4286119E-01 

6.3443400E-01 
6.9469230t-01 

4.7726849E-01 
5.6197330E-01 

3.8035020E-01 
2.713221OF-01 
1.5036220E-01 
1.7722890E-02 

-1.2626930E-01 
-2.8121400E-01 
-4.4663799E-01 
-6.2199650E-01 
-8.0667499E-01 
-1.00OOOOOE+00 

0.3141590  0.6283180 
2.5132720 

0.9424770 
2.8274310 

1. 
3.1415900 

-9.9997303068974430-01 
-9.9600880408714610-01 
-9.8430527165758000-01 

-9.3768028931754380-01 
-9.6486243409214330-01 

-9.0275884170699390-01 
-8.6083966966767030-01 

-7.5823290412R8898D-01 
-6.9754531745507570-01 
-6.3060159217413290-01 
-5.588184342114288D-01 
-4.8361257523299060-@l 
-4.0498399740250380-01 
-3.2293284849068940-01 
-2.3745872166868900-01 
-1.504066457916133D-Dl 
-6.3621661292738960-02 

2.2894859211768810-02 
1.0914566519816440-01 
1.9512937980631270-01 
2.7883413814854350-01 

4.3336987506217420-01 
3.5824801631203030-01 

5.0420210175542880-01 

6.3113426208474490-01 
5.7074346862346000-01 

6.8351476848392110-01 
7.2788434645774220-01 
7.6424440606196730-01 
7.925941844018989D-01 
8.1152540295856170-01 
R.196298040262473D-01 

Y+ 

-8 .126643582791188~-n l  

OEV 
2.6969310255697820-05 

-5.5068882578501730-05 
4.5994277493133230-05 

-1.8293214140258090-04 
-1.8279271262444660-04 

3.8083169560709780-04 
1.6075621676170380-04 

-3.8839702767833620-04 
6.8442562212611690-05 

-5.4771964146949070-04 
8.2604774872208080-05 
6.264626653831318D-04 
2.5182530283129890-04 

-4.1489681394368820-04 
-7.1064919969854310-04 

6.1777486236369580-05 
7.8355502895188780-04 

-4.39083744732312DD-04 
3.600R87559880306D-04 

-8.2493514607628880-04 
-2.0207937629912460-06 

8.2023822617260930-04 
4.3301515212390560-D4 

-3.6612514787259800-04 

-5.1’536975996749720-05 
-7.852945444102311D-04 

7.309594748243775D-04 

-2.4565139167220810-04 
4.3297022847754720-04 

-6.3319639603287570-04 
-1.0451930436561340-04 

5.1880478398969030-04 
3.672C259106282070-04 

8.1690751890833550-01 -7.1777597115740830-05 
8.0335845080569520-01 -3.6554756209117300-04 
7.7898256917293910-01 -1.396344155466522D-04 
7.4307596720976580-01 2.1477381103071780-04 
6.9493474275128090-01 2.4244398132999830-04 
6.3455996786358780-01 1-259682059568945D-04 

.~~ ~~ 

5.6194969521163700-01  -2.3638344805303720-05 
4.7710479981030750-01 -1.6369858060549800-04 
3.8019417600890650-01 -1.5602258780944570-04 
2.713866635109090D-01 6.4562156310010720-05 
1.506844!’810625190-01 3.2222893387435720-04 

-1.2641430657717790-01 -1.450D704023445720-04 
1.8083467862419770-02 3.6057784859089280-04 

-2.8173231168454380-01 -5.1831288998815950-04 
-4.4679394315868910-01 -1.559438923031120D-04 
-6.215963888670468D-01 4~0011073097945270-04 
-8.0614512107911460-01 5.2988089975958270-04 
-1 .0~04374799161070 00 -4.374799161066534D-04 

2566360  1.570795C  1.8849540 

R - E R R  
-9.2696931025569780-04 
-3.4617645291C67160-94 

3.5595C08507312490-04 
0.1896299662558000-03 

-0.1780404557962410-03 
3.1949794141172830-03 

-0.442199988277400D-03 
-0.842128706282812D-04 

3.5123834479570450-03 
3.7858271580671410-03 

-0.1309764463289500-03 
-3.1119793332427300-02 
-’3.5204460227957100-03 

0.1025527686963990-02 

-3.2600932822900250-03 
0.2205463190500950-52 

-3.5182578134688920-02 
-0.5627991665C28920-02 
-0.1881725698921150-01 
-0.7501415319130720-02 
-0.103560665109604D-04 

3.2950349699787100-02 

-3.8441  198048935140-03 
0.1210164891690480-02 

-3.1555077513150360-02 
-3.9027930523727520-04 

0.115951085883933D-02 

-2.3373729861394810-03 
3.6338482881308380-0) 

-3.8278401589980470-03 
-0.1318524981521140-03 

3.6397047633859270-03 

-3.8785730240994170-94 
3.4482110991268920-03 

-7.4548172791076690-03 
-3.1792201722701820-03 

0.2891129757105230-03 
3.348994773310830D-03 

-0.4200972654020850-04 
3.1985521047498600-03 

-9.3429905412936320-03 
-0.4102077201092140-03 

0.2379539152456750-0.3 

0.2034531886783360-9: 
3.214288521748057C-02 

0.114839506329907D-02 
3.1843126203567200-0’ 
0.3491505258380470-03 

-0.643268460896532C-03 
-0~6568703610000540-03 

0.4374799161066530-03 

CORRELATION O F  F I T T t O  O A T A  T O  ORIGINAL O A T A  

STANO4RO DEVIATION = 4.9801322165876630-04 
V A R I A N C E  = 2.4ac1717257076730-07 

MAXIMUM CORRELATION = 0.6470588235294120 C C  
CORRELATION I N D E X  = 0.6470587006306660 O C  

NO R E F I T  C H E C K  M A D E  
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TABLE I. - COMPARISON OF FITLOS CURVE WITH f(x) 

0 
0.6283180F 
0.1256636 
0 ,1884954  
0.2513272 
0.3141590 
0.3769908 
0.4398226 
0.5026544 
0.5654862 
0.6283180 
0.6911498 
0.7539816 
0 .8168134  
0.8796451 
0.9424770 

X 

1 .   ~ 0 5 3 0 9 0  
1 . n m 1 4 1 0  

1.1938040 
1.1399720 

1.   .?566360 
1 .3194680  

1.4451310 
1.382  300C, 

1.5079630 
1.5707950 

1.6964590 
1.6336270 

1.7592900 
1.H221220 
1.   H849540 
1.9477860 
2.0106180 
2.2734490 
2.136281C 
2.1991130 

2.3247770 
2.2619450 

2.4504400 
2.3876080 

2.5132720 

2.6389360 
2.576  1040 

2 . 7 0 1   i 6 7 0  
2.7645990 
2.8274310 

2.9530950 
2.8932630 

3.0159260 
3.3787580 
3.141  5900 

Y 
- 1 .GCOOO@O 

-01   -0 .9960548 

-0 ,9646795  
-0.9374975 
-0 .9029196  
-0.8612205 

-0.7578446 
-0.8127328 

-0.6Y69976 
-0.6306842 
-0.5594449 
-0 .4838644  
-0.4?45691 
-0.3222222 
-0 .2375205  

-0.6398175E 
-- u.1511902 

0.2333394F: 
0 .1699706 
C.1951314 

0.3578150 
0.2780139 

0.4337360 
0.5349R74 
0.5707950 
0.6304033 
0.6830818 
0.7281300 
0 .7648776  
0.7926987 
0 .8110066  
0.8192626 
0 .8169793  
0.8.37240 
0 .7791222  
C.7428612 
0 .6946923  
0 .6344340  
0 .5619733  
0.4  172685 
0.3803502 
0 .2713221  
q.1503622 
0.1772289E 

-0.1262693 

-0.4466380 
-0.2812140 

-0.6219965 
- 0 . 8 ~ 6 6 7 5 0  
- 1 . o i o o o o o  

-0.9842502 

Y* 
-1 .0009504 
-0.9962719 
-0 .9843084  
-0.9644736 
-0.9370816 
-0.9024462 
-C.R608813 
-0.8127099 

-0.6977490 
-0.7582188 

-0.6316053 

-0.4841748 
-G.5601796 

-0.4043719 
-0.3215518 
-0.2364950 
-0.1499827 

-0  1 -0 .6279570E-01 
-0  1 0.2429129E-01 

0.1105385 
0.1952096 
0.2775697 
0.3568839 
0.4324161 
0.5034339 
0 .5692009  
0.6289825 
0.6820436 

0.7650642 
0 .7276487  

0.7935547 

0 .8208203  
0.8123850 

0.8182256 

0.77Y1009 
0.  R043646 

0 .7422979  
0.6938193 
0.6335298 
0.5612927 
0.4769760 

0.2717314 
0.3804867 

0.1507260 
“ 0  1 

-0 .1263368 
0.1786852E-01 

-0.2813877 

-0 .6220134  
-0  4467816  

-0.8065863 
-0 

Y *-Y 

-0.2171248E-03 
-0.5036592E-04 

-0.5816668E-04 
0.2058744E-03 
0.4158914E-03 
0.473395OE-03 
0.3391728E-03 

-0.7513985E-03 
-0.3742203E-03 

-0.9211525E-03 
-0.7346943E-03 
-0.3104061E-03 

0.1972429E-03 
0.6704219E-03 
0.1025449E-02 

0.9573505E-03 
0.1186051E-02 

0.5678888E-03 
0.7819757E-04 

-0.4441738E-03 

-0.1319863E-02 
-0.9310730E-03 

-0.1553535E-02 
-0.1594052E-02 

0 . 3 1 9 9 3 3 9 ~ - n 4  

0 . 1 2 0 7 5 1 9 ~ - n 2  

- 0 . 1 4 2 3 8 0 3 ~ - 0 2  
- 0 . 1 0 3 8 2 0 9 ~ - n 2  
-0.4813448E-03 

0.1866370E-03 
0.8559525E-03 
0.1378387E-02 
0.1557715E-02 
0.124631RE-02 
0.6406158E-03 

-0.5632862E-03 
-0 .21345Y lE-04  

-0.8729547E-03 
-0.9041950E-03 
-0.6805807E-03 
-0.2917275E-03 

0.1364686E-03 

0.3638361E-03 
0.1456330E-03 

-0.1736917E-03 
-0.1436248E-03 
-0.1694262E-04 

0.8875132E-04 
1 .DO00000 

n . 4 0 9 3 4 6 1 ~ - 0 3  

- 0 . 6 7 5 4 a 8 3 ~ - 0 4  
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X 
0 
O. tZ83180E-01 

0 .1884954  
0.1256636 

0.251  3272 
0.3141590 
0.3769908 
0.4398226 
0 .5026544  
0.5654862 
0.6283180 
0.6911498 
0 .7539816  
0.8168134 
0 .9796451  
0.9424770 
1 .J053090  
1.068  1410 
1.1309720 
1.1938040 
1 .2566360  
1.3194680 
1 .3823000  
1.4451310 
1.5079630 
1.5707950 
1 .   b336270 
1.6964590 
1. 7592900 
1.8221220 
1.   d849540 
1 .9477860  
2 . i 1 0 6 1 8 0  
2.0734490 
2.1362810 
2.199  1130 
2.2619450 
2.3247770 
2.3876080 
2.4534400 
2.5132720 
2.576  1040 
2.6389360 
2.  701  7h70 
2.7645990 
2.8274310 
2.8902630 
2.9530950 
3.'1159260 
3.0787580 
3.1415900 

TABLE II. - COMPARISON OF y*' WITH f'(x) 

dY/dX 
0 
0.1254983 

0 .3725378  
C. 2 500058 

0.4921210 
0.6C77997 
0.7186415 
0.8237424 
0.9222328 
1.0  132823 
1.0961049 
1.1699639 
1.2341759 
1.2881158 

1.3629912 
1.3312202 

1.3829996 
1.3908878 
1.3863723 
1 .3692459  
1.3393793 
1.2967224 
1.2413053 
1.1732398 
1.0927146 
1.0c00021 
0.8954524 
0.7794939 
0.6526328 

0 .3685770  
0.5154434 

3.2127518 
0.4875@46E-01 

-0.1225800 
-0.3G03440 
-0 .4835848  
-C.6713007 
-0.8624470 
-1.0559385 
-1.2506672 
-1.4454896 
-1.6392453 
-1.8307597 
-2.0188470 

-2.3800253 
-2.2023296 

-2.5507663 
-2.7134030 
-2.8668072 
-3.OC98889 
-3.1415873 

dY*/dX 
-0.6664473E-02 

0.1261036 
0.2538756 
0.3766517 

0.6072157 
0.4944317 

0.7150037 
0.8177956 
0.9155916 
1.0083916 
1.0961955 
1.1752873 

1.2961864 
1 .2419509  

1.3379936 
1.3673728 
1 .3843237  
1.3888464 
1.3813069 

1.3311386 
1.3620709 

1.2885097 
1.2341844 
1.1681638 
1.0904458 

0.8999205 
1.0010314 

0.7871132 
0.6626115 
0.!5264115 
0.3785150 
0.2189220 

-0.1305877 

-0 .4935481  
-0.3109823 

-0.8651937 
-0.6782853 

-1.0542704 
-1 .2455219  

-1.6330362 
-1.8289229 
-2.0215197 
-2.2061239 
-2.3827324 

-2.7119624 
-2.5513453 

-2.8645815 
-3.0092074 

0.4763266E-01 

-1.4385689 

dy*/dX - dy/dx 
-0.6664473E-02 

0.6053094E-03 
0.3869805E-02 
0.4113883E-02 
0.2315704E-02 

-0.5840361E-03 
-0.3637798E-02 
-0.5946755E-02 

-0.4890755E-02 
-0.6641194E-02 

0.9052455E-04 
0.5323440E-02 

0.8070603E-02 
0.7775053E-02 

0.6773457E-02 
0.4381567E-02 
0.1324087E-02 

-0.2041385E-02 
-0.5065411E-02 
-0.7174999E-02 
-0.8240774E-02 
-0.8212730E-02 

-0.5075917E-02 
-0.7120892E-02 

-0.2268776E-02 
0.1029342E-02 
0.4468091F-02 
0.7619314E-02 
0.9978689E-02 
0.109681O.F-01 
0.9937912F-02 
0.61732456-02 

-0.1117799E-02 
-0.8007713E-02 

-0.9963315E-02 
-0.1063830E-01 

-0.6984554E-02 
-0.2746679E-02 

0.1668110E-02 
0.5145237E-02 
0.6920710E-02 
0.6209150E-02 
0.1836717E-02 

-0.2672642E-02 

-0.2707154E-02 
-0.3794283E-02 

-0.5789101E-03 
0.1443585E-02 
0.2225727E-02 
0.6815195E-03 

-0 3.1415873 
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TABLE In. - COMPAREON O F S X f  y* dx W I T H 4 x f  f(x) dx 
x. 

X 
0 
0.6283180E 

0 .1884954  
0.1256636 

0.3141590 
0.2513272 

0.3769908 
0.4398226 

0.5654862 
0. '2026544 

0.6911498 
0 .7539816  
0.8168134 
0 .8796451  
0.9424770 
1.0053090 
1.0681410 
1.1309720 
1.1938040 

1.3194680 
1.3823000 
1.4451310 

1.5707950 
1.5079630 

1.6336270 
1.6964590 

1.8221220 
1.7592990 

1.8849540 
1.9477860 
2.3136180 
2.0734490 
2.1362810 
2.1991130 
2.2619450 

2.3876080 
2.4504400 
2.5132720 
2.5761040 
2.6389360 
2.701  7610 

2.8274310 
2.7645990 

2.8932630 
2.9530950 
3.0159260 
3.0787580 
3.1415900 

0.6283180 

1 .2556360  

2 .  w + r 7 7 0  

f Y  dx 

-0 1 -0 .6274915E-01 
-0 

-0.12500  32 
-0.1 R62709 
-0.2460688 

-0 - 3 5 9 3 8 3 8  
-0.3039252 

-0.4613806 
-0.4120071 

-0.5C71157 
-9.5488533 
-0.5862666 
-0.6190642 
-0.6469929 
-0.6698399 
-0.6874352 
-0.6S96535 

- 0 . l C 7 6 9 1 4  
-0.7C64159 

-0.7034979 
-0.6'339030 
-0 .6790246  
-0.6590311 
-0.6341418 
-0 .6046244  
-0.5707971 
-9.5330258 
-0.4917232 
-0 .4473476  
-0.4C03982 
-0 .3514170  
-0.3009838 
-0 .2491133  
-C.1%2536 
-0 .1472790  
-0.9749204E-01 
-9.4961565E-01 
-0.4390597E-02 

0.3742823E-01 
0.7507864E-01 
0 .1077915  

0 .1553342  
0.1347983 

0.1686435 
0 .1739844  
0 .1706328  
0.1578875 
0.1350748 
0.1015535 

0.2652407F-05 
0.5671749E-01 

fY* dx 
0.4712424E-09 

-0.6275994E-01 
-0.1250237 
-0.1862868 
-0.2460646 
-0.3038922 
-0.3593241 
-0.4119351 

-0.4070902 
-0.4613191 

-0.5488819 
-0.5863489 
-0.6191802 
-0.6471125 
-0.6699318 
-0.6874730 

-0 .7063063  
-0.6996202 

-0 .7032713  
-0.7075135 

-0.6936558 
-0.6767889 
-0.6588395 
-0.6340211 
-0.6045948 
-0 .5708675  
-0 .5331921  
-0 .4919678  
-0.4476407 
-0 .4007008  
-0 .3516866  
-0.3011819 
-0 .249b167  
-0.1982667 
-0.1472320 
-0.9742580E-01 

-0.4390209E-02 
-0.4956876E-01 

0.3737132E-01 
0.7497072E-01 
0.1076525 
0 .1346546  
0.1552091 
0.1685442 
0.1739015 

0 . 1 5 7 7 9 8 4  
0 .1705520  

0.1349750 
0 .1014485  

-0.9539165E-04 
0.5661521E-01 

f y d x -  f y *  dx 
0.4712424E-09 

-0.1079123E-04 
-0.2050772E-04 
-0.1594424E-04 

0.4187226E-05 
0.3308058E-04 
0.5961955E-04 
0.7204339E-04 
0.6152689E-04 

-0.2858788E-04 
0.2558529E-04 

-0.8233637E-04 
-0.1159683E-03 
-0.1196191E-03 

-0.3786385F-04 
-0.9193271E-04 

0.1095608E-03 
0.3328919E-04 

0.1778826E-03 

0.2471805E-03 
0.2265275E-03 

0.2356768E-03 
0.1920834E-03 

0.2952665E-04 
0.1206994E-03 

-0.7043779E-04 
-0.1662821E-03 

-0.2933835E-03 
-0.3026240E-03 

- 0 . 2 4 4 5 9 8 8 ~ - n 3  

- ~ . 2 6 9 5 3 2 2 ~ - n 3  
-0.1981072E-03 
-0.1034811E-03 
-0.1311488E-04 

0.4703179E-04 
0.6624311E-04 
0.4689349E-04 
0.3881287E-06 

-0.1077114E-03 
-0.5691033E-04 

-0.1393344E-03 
-0.1437012E-03 

-0.9925663E-04 
-0.1250263E-03 

-0.8292124E-04 

-0.8911267E-04 
-0.9971485E-04 
-0.1050094E-03 
-0.1022718E-03 
-0.9804405E-04 

- n . 8 0 8 6 1 1 5 ~ - 0 4  

+ O l *  E X I T  IN SAM2 
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Figure 6. - Comparison of FITLOS curve with f(xL 
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